Deciphering β-lactamase-independent p-lactam resistance evolution trajectories in Pseudomonas aeruginosa

被引:35
|
作者
Cabot, Gabriel
Florit-Mendoza, Llorenc
Sanchez-Diener, Irina
Zamorano, Laura
Oliver, Antonio [1 ]
机构
[1] Hosp Univ Son Espases, Serv Microbiol, Inst Invest Sanitaria Illes Balea IdISBa, Palma De Mallorca, Spain
关键词
CYSTIC-FIBROSIS; ANTIMICROBIAL RESISTANCE; CEFTOLOZANE-TAZOBACTAM; GENETIC-DETERMINANTS; STRAINS; SUSCEPTIBILITY; INFECTIONS; ADAPTATION; SEQUENCE; DELETION;
D O I
10.1093/jac/dky364
中图分类号
R51 [传染病];
学科分类号
100401 ;
摘要
Background: While resistance related to the expression of beta-Eactamases, such as AmpC from Pseudomonas aeruginosa, has been deeply studied, this work addresses the gap in the knowledge of other potential bacterial strategies to overcome the activity of beta-lactams when beta-lactamases are not expressed. Methods: We analysed 13-lactam resistance evolution trajectories in a WT strain and in isogenic mutants either lacking AmpC (AmpC mutant) or unable to express it (AmpG mutant), exposed to increasing concentrations of ceftazidime for 7 days in quintuplicate experiments, Characterization of evolved lineages included susceptibility profiles, whole-genome sequences, resistance mechanisms, fitness (competitive growth assays) and virulence (Caenorhabditis elegans model). Results: Development of resistance was faster for the WT strain but, after 7 days, all strains reached clinical ceftazidime resistance levels, The main resistance mechanism in the WT strain was ampC overexpression, due to mutations in clacB and ampD or mpl, In contrast, ampC overexpression did not evolve in any of the AmpG lineages. Moreover, sequencing of the Delta AmpC and Delta AmpG evolved lineages revealed alternative resistance mutations (not seen in WT lineages) that included, in all cases, large (50-600 kb) deletions of specific chromosomal regions together with mutations leading to p-lactam target [ftsI (PBP3)] modification and/or the overexpression or structural modification of the efflux pump MexAB-OprM. Finally, evolved lineages from the AmpC and, especially, AmpG mutants showed a reduced fitness and virulence. Conclusions: In addition to providing new insights intop-lactam resistance mechanisms and evolution, our findings should be helpful for guiding future strategies to combat P. aeruginosa nfections.
引用
收藏
页码:3322 / 3331
页数:10
相关论文
共 50 条
  • [21] Permeability enhancers sensitize β-lactamase-expressing Enterobacteriaceae and Pseudomonas aeruginosa to β-lactamase inhibitors, thereby restoring their β-lactam susceptibility
    Ferrer-Espada, Raquel
    Sanchez-Gomez, Susana
    Pitts, Betsey
    Stewart, Philip S.
    Martinez-de-Tejada, Guillermo
    INTERNATIONAL JOURNAL OF ANTIMICROBIAL AGENTS, 2020, 56 (01)
  • [22] Mechanisms of β-lactam resistance amongst Pseudomonas aeruginosa isolated in an Italian survey
    Bonfiglio, G
    Laksai, Y
    Franchino, L
    Amicosante, G
    Nicoletti, G
    JOURNAL OF ANTIMICROBIAL CHEMOTHERAPY, 1998, 42 (06) : 697 - 702
  • [23] Muropeptides in Pseudomonas aeruginosa and their Role as Elicitors of β-Lactam-Antibiotic Resistance
    Lee, Mijoon
    Dhar, Supurna
    De Benedetti, Stefania
    Hesek, Dusan
    Boggess, Bill
    Blazquez, Blas
    Mathee, Kalai
    Mobashery, Shahriar
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2016, 55 (24) : 6882 - 6886
  • [24] Guanidinylated Amphiphilic Tobramycin Derivatives Synergize with ß-Lactam/ß-Lactamase Inhibitor Combinations against Pseudomonas aeruginosa
    Ramirez, Danzel Marie
    Ramirez, Danyel
    Dhiman, Shiv
    Arora, Rajat
    Lozeau, Christian
    Arthur, Gilbert
    Zhanel, George
    Schweizer, Frank
    ACS INFECTIOUS DISEASES, 2023, 9 (09): : 1754 - 1768
  • [25] CHARACTERIZATION OF A NOVEL PLASMID-MEDIATED BETA-LACTAMASE AND ITS CONTRIBUTION TO BETA-LACTAM RESISTANCE IN PSEUDOMONAS-AERUGINOSA
    SIMPSON, IN
    PLESTED, SJ
    BUDINJONES, MJ
    LEES, J
    HEDGES, RW
    JACOBY, GA
    FEMS MICROBIOLOGY LETTERS, 1983, 19 (01) : 23 - 27
  • [26] Impact of chromosomally encoded resistance mechanisms and transferable β-lactamases on the activity of cefiderocol and innovative β-lactam/β-lactamase inhibitor combinations against Pseudomonas aeruginosa
    Gonzalez-Pinto, Lucia
    Alonso-Garcia, Isaac
    Blanco-Martin, Tania
    Camacho-Zamora, Pablo
    Fraile-Ribot, Pablo Arturo
    Outeda-Garcia, Michelle
    Lasarte-Monterrubio, Cristina
    Guijarro-Sanchez, Paula
    Maceiras, Romina
    Moya, Bartolome
    Juan, Carlos
    Vazquez-Ucha, Juan Carlos
    Beceiro, Alejandro
    Oliver, Antonio
    Bou, German
    Arca-Suarez, Jorge
    JOURNAL OF ANTIMICROBIAL CHEMOTHERAPY, 2024, 79 (10) : 2591 - 2597
  • [27] PBP Target Profiling by β-Lactam and β-Lactamase Inhibitors in Intact Pseudomonas aeruginosa: Effects of the Intrinsic and Acquired Resistance Determinants on the Periplasmic Drug Availability
    Montaner, Maria
    Lopez-Arguello, Silvia
    Oliver, Antonio
    Moya, Bartolome
    MICROBIOLOGY SPECTRUM, 2023, 11 (01):
  • [28] Evolution of Broad Spectrum β-Lactam Resistance in an Engineered Metallo-β-lactamase
    Sun, Song
    Zhang, Wei
    Mannervik, Bengt
    Andersson, Dan I.
    JOURNAL OF BIOLOGICAL CHEMISTRY, 2013, 288 (04) : 2314 - 2324
  • [29] Non-KPC Attributes of Newer β-lactam/β-lactamase Inhibitors, Part 1: Enterobacterales and Pseudomonas aeruginosa
    Fratoni, Andrew J.
    Gethers, Matthew L.
    Nicolau, David P.
    Kuti, Joseph L.
    CLINICAL INFECTIOUS DISEASES, 2024, 79 (01) : 33 - 42
  • [30] Inactivation of the Glycoside Hydrolase NagZ Attenuates Antipseudomonal β-Lactam Resistance in Pseudomonas aeruginosa
    Asgarali, Azizah
    Stubbs, Keith A.
    Oliver, Antonio
    Vocadlo, David J.
    Mark, Brian L.
    ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, 2009, 53 (06) : 2274 - 2282