Online Geometric Reconstruction

被引:9
|
作者
Chazelle, Bernard [1 ]
Seshadhri, C. [2 ]
机构
[1] Princeton Univ, Princeton, NJ 08544 USA
[2] Sandia Natl Labs, Livermore, CA 94551 USA
关键词
Algorithms; Theory; Computational geometry; sublinear algorithms;
D O I
10.1145/1989727.1989728
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
We investigate a new class of geometric problems based on the idea of online error correction. Suppose one is given access to a large geometric dataset though a query mechanism; for example, the dataset could be a terrain and a query might ask for the coordinates of a particular vertex or for the edges incident to it. Suppose, in addition, that the dataset satisfies some known structural property P (for example, monotonicity or convexity) but that, because of errors and noise, the queries occasionally provide answers that violate P. Can one design a filter that modifies the query's answers so that (i) the output satisfies P; (ii) the amount of data modification is minimized? We provide upper and lower bounds on the complexity of online reconstruction for convexity in 2D and 3D.
引用
收藏
页数:32
相关论文
共 50 条
  • [11] Improved Reconstruction of Random Geometric Graphs
    Dani, Varsha
    Díaz, Josep
    Hayes, Thomas P.
    Moore, Cristopher
    Leibniz International Proceedings in Informatics, LIPIcs, 2022, 229
  • [12] `Deep Geometric Prior for Surface Reconstruction
    Williams, Francis
    Schneider, Teseo
    Silva, Claudio
    Zorin, Denis
    Bruna, Joan
    Panozzo, Daniele
    2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 10122 - 10131
  • [13] Geometric reconstruction of biological orthogonal plywoods
    Gutierrez, Oscar F. Aguilar
    Rey, Alejandro D.
    SOFT MATTER, 2016, 12 (04) : 1184 - 1191
  • [14] INTERACTIVE RECONSTRUCTION VIA GEOMETRIC PROBING
    SKIENA, SS
    PROCEEDINGS OF THE IEEE, 1992, 80 (09) : 1364 - 1383
  • [15] L∞ minimization in geometric reconstruction problems
    Hartley, R
    Schaffalitzky, F
    PROCEEDINGS OF THE 2004 IEEE COMPUTER SOCIETY CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, VOL 1, 2004, : 504 - 509
  • [16] Geometric reconstruction of the drawn tube shape
    Augustín G.
    Ingrid G.
    Martinkovič M.
    Materials Science Forum, 2019, 952 : 13 - 21
  • [17] An improved α-Shapes Algorithm for Geometric Reconstruction
    Jong, BS
    Lin, TW
    Yang, WH
    Jong, KS
    22ND INTERNATIONAL CONFERENCE ON DISTRIBUTED COMPUTING SYSTEMS WORKSHOP, PROCEEDINGS, 2002, : 228 - 232
  • [18] Geometric-optical reconstruction of a wavefront
    Chekalin, SV
    Dement'ev, DA
    Ivanov, AL
    Matveets, YA
    Serov, OB
    Smolovich, AM
    Stepanov, AG
    NONLINEAR OPTICAL PHENOMENA AND COHERENT OPTICS IN INFORMATION TECHNOLOGIES - ICONO'98, 1999, 3733 : 452 - 458
  • [19] Quasiconvex optimization for robust geometric reconstruction
    Ke, QF
    Kanade, T
    TENTH IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION, VOLS 1 AND 2, PROCEEDINGS, 2005, : 986 - 993
  • [20] Geometric reconstruction methods for electron tomography
    Alpers, Andreas
    Gardner, Richard J.
    Koenig, Stefan
    Pennington, Robert S.
    Boothroyd, Chris B.
    Houben, Lothar
    Dunin-Borkowski, Rafal E.
    Batenburg, Kees Joost
    ULTRAMICROSCOPY, 2013, 128 : 42 - 54