Nonlinear Analysis of Effect of Rigid Body Rotation on Ferroconvection

被引:5
|
作者
Melson, Anthony Christy [1 ,2 ]
Sekhar, G. N. [1 ,2 ]
Siddheshwar, P. G. [3 ]
机构
[1] BMS Coll Engn, Dept Math, Bengaluru 560019, India
[2] Visvesvaraya Technol Univ, Belagavi 590018, India
[3] Bangalore Univ, Dept Math, Jnanabharathi Campus, Bengaluru 560056, India
来源
关键词
RAYLEIGH-BENARD CONVECTION; STATIONARY CONVECTION; AMPLITUDE EQUATION; INSTABILITY; LAYER; NANOLIQUIDS; ENCLOSURES; UNSTEADY;
D O I
10.1115/1.4046533
中图分类号
O414.1 [热力学];
学科分类号
摘要
The paper presents a numerical study of the effect of rotation on convection and heat transport in ferromagnetic liquids. The conditions for validity of principle of exchange of stabilities have been identified by means of linear stability analysis. The nonlinear stability analysis has been done using the streamline formulation. The systems of equations derived with the help of minimal Fourier series representation are analogous to those of the Lorenz model. The effect of different parameters on heat transport has been quantified through the average Nusselt number obtained from the solution of the scaled Lorenz model. Certain unusual effects of buoyancy magnetic parameter and nonbuoyancy magnetic parameter on heat transport are reported.
引用
收藏
页数:7
相关论文
共 50 条
  • [41] RIGID BODY MOTION TEST FOR NONLINEAR-ANALYSIS WITH BEAM ELEMENTS
    YANG, YB
    CHIOU, HT
    JOURNAL OF ENGINEERING MECHANICS, 1987, 113 (09) : 1404 - 1419
  • [42] Linking the rotation of a rigid body to the Schrodinger equation: The quantum tennis racket effect and beyond
    Van Damme, L.
    Leiner, D.
    Mardesic, P.
    Glaser, S. J.
    Sugny, D.
    SCIENTIFIC REPORTS, 2017, 7
  • [43] EFFECT OF LOCAL RIGID ROTATION ON SUNSPOTS
    MARTRES, MJ
    MOURADIAN, Z
    SORUESCAUT, I
    ASTRONOMY & ASTROPHYSICS, 1986, 161 (02) : 376 - 380
  • [44] On Optimal Rotation of a Rigid Body by Applying Internal Forces
    Rozenblat, G. M.
    DOKLADY MATHEMATICS, 2022, 106 (01) : 291 - 297
  • [45] A reparametrization of the rotation matrix in rigid-body dynamics
    Zhu, Xiaoqing (alex.zhuxq@gmail.com), 1600, American Society of Mechanical Engineers (ASME), United States (82):
  • [46] Rigid body coupled rotation around no intersecting axes
    Veljovic, Ljiljana
    Radakovic, Aleksandar
    Milosavljevic, Dragan
    Bogdanovic, Gordana
    INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 2015, 73 : 100 - 107
  • [47] On Optimal Rigid Body Rotation with Application of Internal Forces
    Rozenblat, G. M.
    Reshmin, S. A.
    MECHANICS OF SOLIDS, 2023, 58 (08) : 2779 - 2791
  • [48] On Optimal Rigid Body Rotation with Application of Internal Forces
    G. M. Rozenblat
    S. A. Reshmin
    Mechanics of Solids, 2023, 58 : 2779 - 2791
  • [49] On Optimal Rotation of a Rigid Body by Applying Internal Forces
    G. M. Rozenblat
    Doklady Mathematics, 2022, 106 : 291 - 297
  • [50] Formation of GMCS by aggregation in a disk with rigid body rotation
    Zhang, TJ
    Song, GX
    NUMERICAL ASTROPHYSICS, 1999, 240 : 109 - 110