Nonlinear Analysis of Effect of Rigid Body Rotation on Ferroconvection

被引:5
|
作者
Melson, Anthony Christy [1 ,2 ]
Sekhar, G. N. [1 ,2 ]
Siddheshwar, P. G. [3 ]
机构
[1] BMS Coll Engn, Dept Math, Bengaluru 560019, India
[2] Visvesvaraya Technol Univ, Belagavi 590018, India
[3] Bangalore Univ, Dept Math, Jnanabharathi Campus, Bengaluru 560056, India
来源
关键词
RAYLEIGH-BENARD CONVECTION; STATIONARY CONVECTION; AMPLITUDE EQUATION; INSTABILITY; LAYER; NANOLIQUIDS; ENCLOSURES; UNSTEADY;
D O I
10.1115/1.4046533
中图分类号
O414.1 [热力学];
学科分类号
摘要
The paper presents a numerical study of the effect of rotation on convection and heat transport in ferromagnetic liquids. The conditions for validity of principle of exchange of stabilities have been identified by means of linear stability analysis. The nonlinear stability analysis has been done using the streamline formulation. The systems of equations derived with the help of minimal Fourier series representation are analogous to those of the Lorenz model. The effect of different parameters on heat transport has been quantified through the average Nusselt number obtained from the solution of the scaled Lorenz model. Certain unusual effects of buoyancy magnetic parameter and nonbuoyancy magnetic parameter on heat transport are reported.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Nonlinear analysis of the effect of viscoelasticity on ferroconvection
    Melson, Anthony C.
    Siddheshwar, Pradeep G.
    Sekhar, Gummadi N.
    HEAT TRANSFER, 2021, 50 (04) : 3861 - 3878
  • [2] The effect of rotation on ferroconvection in the presence of couple stress forces in porous medium: a nonlinear analysis
    Akanksha Thakur
    Sunil Kumar
    Reeta Devi
    The European Physical Journal Plus, 139
  • [3] The effect of rotation on ferroconvection in the presence of couple stress forces in porous medium: a nonlinear analysis
    Thakur, Akanksha
    Kumar, Sunil
    Devi, Reeta
    EUROPEAN PHYSICAL JOURNAL PLUS, 2024, 139 (03):
  • [4] Geometrical analysis of free rotation of a rigid body
    Suzuki, K
    Watanabe, Y
    Kambe, T
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1998, 31 (28): : 6073 - 6080
  • [5] Quaternions and the rotation of a rigid body
    Arribas, M.
    Elipe, A.
    Palacios, M.
    CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 2006, 96 (3-4): : 239 - 251
  • [6] Inertial rotation of a rigid body
    Butikov, Eugene
    EUROPEAN JOURNAL OF PHYSICS, 2006, 27 (04) : 913 - 922
  • [7] Quaternions and the rotation of a rigid body
    M. Arribas
    A. Elipe
    M. Palacios
    Celestial Mechanics and Dynamical Astronomy, 2006, 96 : 239 - 251
  • [8] A qualified plate theory for rigid rotation in postcritical nonlinear analysis
    Kuo, S. R.
    Yang, Judy P.
    Yang, Y. B.
    MECHANICS OF ADVANCED MATERIALS AND STRUCTURES, 2018, 25 (15-16) : 1323 - 1334
  • [9] Rigid body rotation and block internal discretization in DDA analysis
    Cheng, YM
    Zhang, YH
    INTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS, 2000, 24 (06) : 567 - 578
  • [10] The rigid body rule for the nonlinear analysis of membrane structures
    Chen Z.-H.
    Yang S.
    Yang Y.-B.
    Chen, Zhao-Hui (zhaohuic@cqu.edu.cn), 1600, Tsinghua University (37): : 246 - 256