Unmixing-based Landsat TM and MERIS FR data fusion

被引:212
|
作者
Zurita-Milla, Raul [1 ]
Clevers, Jan G. P. W. [1 ]
Schdepman, Michael E. [1 ]
机构
[1] Univ Wageningen & Res Ctr, Ctr Geoinformat, NL-6700 AA Wageningen, Netherlands
关键词
ERGAS; fusion quality; landsat; linear mixing model; Medium Resolution Imaging Spectrometer (MERIS); spatial unmixing;
D O I
10.1109/LGRS.2008.919685
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
An unmixing-based data fusion technique is used to generate images that have the spatial resolution of Landsat Thematic Mapper (TM) and the spectral resolution provided by the Medium Resolution Imaging Spectrometer (MERIS) sensor. The method requires the optimization of the following two parameters: the number of classes used to classify the TM image and the size of the MERIS "window" (neighborhood) used to solve the unmixing equations. The ERGAS index is used to assess the quality of the fused images at the TM and MERIS spatial resolutions and to assist with the identification of the best combination of the two parameters that need to be optimized. Results indicate that it is possible to successfully downscale MERIS full resolution data to a Landsat-like spatial resolution while preserving the MERIS spectral resolution.
引用
收藏
页码:453 / 457
页数:5
相关论文
共 50 条
  • [1] A comparison of STARFM and an unmixing-based algorithm for Landsat and MODIS data fusion
    Gevaert, Caroline M.
    Javier Garcia-Haro, F.
    [J]. REMOTE SENSING OF ENVIRONMENT, 2015, 156 : 34 - 44
  • [2] Regularized Multiresolution Spatial Unmixing for ENVISAT/MERIS and Landsat/TM Image Fusion
    Amoros-Lopez, Julia
    Gomez-Chova, Luis
    Alonso, Luis
    Guanter, Luis
    Moreno, Jose
    Camps-Valls, Gustavo
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2011, 8 (05) : 844 - 848
  • [3] MULTI-RESOLUTION SPATIAL UNMIXING FOR MERIS AND LANDSAT IMAGE FUSION
    Amoros-Lopez, J.
    Gomez-Chova, L.
    Guanter, L.
    Alonso, L.
    Moreno, J.
    Camps-Valls, G.
    [J]. 2010 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2010, : 3672 - 3675
  • [4] Unmixing-based Fusion of Hyperspectral Images for Classification
    Cesmeci, Davut
    Gercek, Deniz
    Gullu, Mehmet Kemal
    Erturk, Alp
    Erturk, Sarp
    [J]. 2013 21ST SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2013,
  • [5] Unmixing-based multisensor multiresolution image fusion
    Zhukov, B
    Oertel, D
    Lanzl, F
    Reinhäckel, G
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 1999, 37 (03): : 1212 - 1226
  • [6] Multitemporal fusion of Landsat/TM and ENVISAT/MERIS for crop monitoring
    Amoros-Lopez, Julia
    Gomez-Chova, Luis
    Alonso, Luis
    Guanter, Luis
    Zurita-Milla, Raul
    Moreno, Jose
    Camps-Valls, Gustavo
    [J]. INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2013, 23 : 132 - 141
  • [7] Unmixing-based multisensor multiresolution image fusion
    Space Research Institute, Russian Academy of Sciences, Moscow, Russia
    [J]. IEEE Trans Geosci Remote Sens, 3 I (1212-1226):
  • [8] DESIGN OF COMBINED OPTICAL IMAGERS USING UNMIXING-BASED HYPERSPECTRAL DATA FUSION
    Yokoya, Naoto
    Iwasaki, Akira
    [J]. 2013 5TH WORKSHOP ON HYPERSPECTRAL IMAGE AND SIGNAL PROCESSING: EVOLUTION IN REMOTE SENSING (WHISPERS), 2013,
  • [9] ABOUT THE APPLICATIONS OF UNMIXING-BASED DENOISING FOR HYPERSPECTRAL DATA
    Cerra, Daniele
    Mueller, Rupert
    Reinartz, Peter
    [J]. SMPR CONFERENCE 2013, 2013, 40-1-W3 : 103 - 106
  • [10] Oakwood crown closure estimation by unmixing Landsat TM data
    Pu, R
    Xu, B
    Gong, P
    [J]. INTERNATIONAL JOURNAL OF REMOTE SENSING, 2003, 24 (22) : 4433 - 4445