Multitemporal fusion of Landsat/TM and ENVISAT/MERIS for crop monitoring

被引:140
|
作者
Amoros-Lopez, Julia [1 ]
Gomez-Chova, Luis [1 ]
Alonso, Luis [1 ]
Guanter, Luis [2 ]
Zurita-Milla, Raul [3 ]
Moreno, Jose [1 ]
Camps-Valls, Gustavo [1 ]
机构
[1] Univ Valencia, Image Proc Lab IPL, Valencia 46980, Spain
[2] Free Univ Berlin, Inst Space Sci, D-12165 Berlin, Germany
[3] Univ Twente, Fac Geoinformat Sci & Earth Observat ITC, NL-7500 AE Enschede, Netherlands
关键词
Image fusion; Regularized spatial unmixing; Point-spread function; Multi-temporal NDVI; Crop monitoring; SPATIAL-RESOLUTION IMPROVEMENT; IMAGE FUSION; SURFACE REFLECTANCE; MERIS IMAGES; TIME-SERIES; ALGORITHMS; TM;
D O I
10.1016/j.jag.2012.12.004
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
Monitoring Earth dynamics using current and future satellites is one of the most important objectives of the remote sensing community. The exploitation of image time series from sensors with different characteristics provides new opportunities to increase the knowledge about environmental changes and to support many operational applications. This paper presents an image fusion approach based on multiresolution and multisensor regularized spatial unmixing. The approach yields a composite image with the spatial resolution of the high spatial resolution image while retaining the spectral and temporal characteristics of the medium spatial resolution image. The approach is tested using images from Landsat/TM and ENVISAT/MERIS instruments, but is general enough to be applied to other sensor pairs. The potential of the proposed spatial unmixing approach is illustrated in an agricultural monitoring application where Landsat temporal profiles from images acquired over Albacete, Spain, in 2004 and 2009 are complemented with MERIS fused images. The resulting spatial resolution from Landsat allows monitoring small and medium size crops at the required scale while the fine spectral and temporal resolution from MERIS allow a more accurate determination of the crop type and phenology as well as capturing rapidly varying land-cover changes. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:132 / 141
页数:10
相关论文
共 50 条
  • [1] Regularized Multiresolution Spatial Unmixing for ENVISAT/MERIS and Landsat/TM Image Fusion
    Amoros-Lopez, Julia
    Gomez-Chova, Luis
    Alonso, Luis
    Guanter, Luis
    Moreno, Jose
    Camps-Valls, Gustavo
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2011, 8 (05) : 844 - 848
  • [2] Unmixing-based Landsat TM and MERIS FR data fusion
    Zurita-Milla, Raul
    Clevers, Jan G. P. W.
    Schdepman, Michael E.
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2008, 5 (03) : 453 - 457
  • [3] Multitemporal TM/Landsat images for monitoring timber exploitation areas in the Brazilian Amazonia
    de Araujo, LS
    dos Santos, JR
    Krug, T
    Shimabukuro, YE
    Lacruz, MSP
    [J]. IGARSS 2001: SCANNING THE PRESENT AND RESOLVING THE FUTURE, VOLS 1-7, PROCEEDINGS, 2001, : 1645 - 1647
  • [4] Multitemporal Landsat-MODIS fusion for cropland drought monitoring in El Salvador
    Nguyen Thanh Son
    Chen, Chi Farn
    Chen, Cheng Ru
    Masferrer, Mario Giovanni Molina
    Recinos, Luis Eduardo Menjivar
    [J]. GEOCARTO INTERNATIONAL, 2019, 34 (12) : 1363 - 1383
  • [5] Envisat MERIS capabilities for monitoring the water quality of perialpine lakes
    Floricioiu, D
    Riedl, C
    Rott, H
    Rott, E
    [J]. IGARSS 2003: IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS I - VII, PROCEEDINGS: LEARNING FROM EARTH'S SHAPES AND SIZES, 2003, : 2134 - 2136
  • [6] MULTITEMPORAL WATER DEPTH MAPPING BY MEANS OF LANDSAT TM
    VANHENGEL, W
    SPITZER, D
    [J]. INTERNATIONAL JOURNAL OF REMOTE SENSING, 1991, 12 (04) : 703 - 712
  • [7] Monitoring agricultural lands in Egypt with multitemporal Landsat TM imagery: How many images are needed?
    PaxLenney, M
    Woodcock, CE
    [J]. REMOTE SENSING OF ENVIRONMENT, 1997, 59 (03) : 522 - 529
  • [8] Surface soil moisture estimation over dense crop using Envisat ASAR and Landsat TM imagery: an approach
    Bao, Yansong
    Zhang, Youjing
    Wang, Junzhan
    Min, Jinzhong
    [J]. INTERNATIONAL JOURNAL OF REMOTE SENSING, 2014, 35 (16) : 6190 - 6212
  • [9] CROP CLASSIFICATION USING MULTITEMPORAL LANDSAT 8 IMAGES
    Song, Jingduo
    Xing, Minfeng
    Ma, Yichuan
    Wang, Long
    Luo, Kaiwei
    Quan, Xingwen
    [J]. 2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 2407 - 2410
  • [10] A NEURAL-NET CLASSIFIER FOR MULTITEMPORAL LANDSAT TM IMAGES
    KAMATA, S
    KAWAGUCHI, E
    [J]. IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 1995, E78D (10) : 1295 - 1300