Differential Absorption Radar at 170 GHz for Atmospheric Boundary Layer Water Vapor Profiling

被引:0
|
作者
Roy, Richard J. [1 ]
Cooper, Ken B. [1 ]
Lebsock, Matthew [1 ]
Millan, Luis [1 ]
Siles, Jose [1 ]
Monje, Raquel Rodriguez [1 ]
机构
[1] CALTECH, Jet Prop Lab, Pasadena, CA 91126 USA
基金
美国国家航空航天局;
关键词
Millimeter wave radar; Meteorological radar; Radar signal processing; LIDAR;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We are developing a frequency-modulated continuous-wave (FMCW) radar between 167 and 174.8 GHz to measure differential absorption due to water vapor within the atmospheric boundary layer. In this work, we report on single-frequency measurements performed within this band in the presence of precipitating clouds. Despite the relatively low transmit power of 6-10 dBm, the high transmit/receive isolation and low noise figure of the system enables detection of radar echos from rain or clouds with high signal-to-noise ratio (SNR) out to about one kilometer. This work builds on technology developed and measurements performed in our group in the 183.5 to 193 GHz band, which is subject to transmission restrictions due to passive remote sensing platforms that rely on those frequencies.
引用
收藏
页码:417 / 420
页数:4
相关论文
共 50 条
  • [21] Absorption coefficient of water vapor across atmospheric troposphere layer
    Wei, Peng-Sheng
    Chiu, Hsuan-Han
    Hsieh, Yin-Chih
    Yen, Da-Lun
    Lee, Chieh
    Tsai, Yi-Cheng
    Ting, Te-Chuan
    HELIYON, 2019, 5 (01)
  • [22] A 1.3 GHz active phased array antenna for wind profiling boundary layer radar
    Nishizawa, K
    Miyashita, H
    Wakayama, T
    Matsuda, T
    Hashiguchi, H
    Fukao, S
    IEEE INTERNATIONAL SYMPOSIUM ON PHASED ARRAY SYSTEMS AND TECHNOLOGY 2003, 2003, : 142 - 145
  • [23] Measuring the 557 GHz Water Vapor Absorption Line with Radar Speckle Averaging
    Cooper, Ken B.
    Drouin, Brian J.
    Pradhan, Omkar
    Siles, Jose V.
    Monje, Raquel Rodriguez
    Nemchick, Deacon J.
    Dengler, Robert J.
    Tamppari, Leslie K.
    2022 IEEE/MTT-S INTERNATIONAL MICROWAVE SYMPOSIUM (IMS 2022), 2022, : 553 - 555
  • [24] LABORATORY STUDIES OF WATER-VAPOR ABSORPTION IN THE ATMOSPHERIC WINDOW AT 213 GHZ
    GODON, M
    CARLIER, J
    BAUER, A
    JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 1992, 47 (04): : 275 - 285
  • [25] Compact, Automated Differential Absorption Lidar for Tropospheric Profiling of Water Vapor
    Sonnenfroh, David
    Repasky, Kevin
    Nehrir, Amin
    2014 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2014,
  • [26] Atmospheric precorrected differential absorption technique to retrieve columnar water vapor
    Schlapfer, D
    Borel, CC
    Keller, J
    Itten, KI
    REMOTE SENSING OF ENVIRONMENT, 1998, 65 (03) : 353 - 366
  • [27] REFRACTION AND ABSORPTION IN ATMOSPHERIC GASES NEAR 22 GHZ WATER VAPOR ROTATIONAL LINE
    MROWINSKI, D
    ZEITSCHRIFT FUR ANGEWANDTE PHYSIK, 1970, 29 (05): : 323 - +
  • [28] Atmospheric Brightness Temperature Fluctuations in the Resonance Absorption Band of Water Vapor 1827.2 GHz
    Egorov, Dobroslav P.
    Kutuza, Boris G.
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2021, 59 (09): : 7627 - 7634
  • [29] Microwave radar remote of atmospheric boundary layer
    Weng, NQ
    Liu, XQ
    MICROWAVE REMOTE SENSING OF THE ATMOSPHERE AND ENVIRONMENT, 1998, 3503 : 334 - 339
  • [30] Water vapor measurements inside clouds and storms using a differential absorption radar
    Millan, Luis F.
    Lebsock, Matthew D.
    Cooper, Ken B.
    Siles, Jose V.
    Dengler, Robert
    Monje, Raquel Rodriguez
    Nehrir, Amin
    Barton-Grimley, Rory A.
    Collins, James E.
    Robinson, Claire E.
    Thornhill, Kenneth L.
    Vomel, Holger
    ATMOSPHERIC MEASUREMENT TECHNIQUES, 2024, 17 (02) : 539 - 559