Temperature data-driven fire source estimation algorithm of the underground pipe gallery

被引:44
|
作者
Sun, Bin [1 ]
Liu, Xiaojiang [2 ]
Xu, Zhao-Dong [2 ]
Xu, Dajun [3 ]
机构
[1] Southeast Univ, China Pakistan Belt & Rd Joint Lab Smart Disaster, Sch Civil Engn, Jiangsu Key Lab Engn Mech, Nanjing, Peoples R China
[2] Southeast Univ, China Pakistan Belt & Rd Joint Lab Smart Disaster, Sch Civil Engn, Nanjing, Peoples R China
[3] Tianjing Fire Res Inst MEM, Tianjin 300000, Peoples R China
基金
中国国家自然科学基金;
关键词
Underground pipe gallery; Artificial intelligence algorithm; Ant colony optimization; Fire source location; 3D space; Temperature field; ANT-COLONY-OPTIMIZATION; FULL-SCALE EXPERIMENTS; SMOKE TEMPERATURE; DETECTION SYSTEMS; TUNNEL; PERFORMANCE;
D O I
10.1016/j.ijthermalsci.2021.107247
中图分类号
O414.1 [热力学];
学科分类号
摘要
Since there exists few effective fire detection technologies for underground pipe gallery application, a temperature data-driven bio-inspired artificial intelligence algorithm is developed to detect fire source in 3D space of the underground pipe gallery, in which a simple physical model is used. In the developed algorithm, Ant colony optimization (ACO) is the first time to be used to determine tunnel fire source, and the new and special pheromone evaporation method and heuristic factor are developed for fitting the concerned problem here. Three fire experiments are used to support the ability of the algorithm. Satisfactory results can always be obtained, which shows that the developed algorithm can be used to estimate the tunnel fire source as well as temperature prediction. In addition, since only temperature data at several sensors is necessary in the developed algorithm, it has a very wide popularization and engineering application prospects due to its advantages of the global optimal ability and computational efficiency as well as the low economic cost.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Estimation Fusion with Data-driven Communication
    Bian, Xiaolei
    Li, X. Rong
    2017 20TH INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION), 2017, : 1410 - 1417
  • [22] Data-driven deep density estimation
    Puchert, Patrik
    Hermosilla, Pedro
    Ritschel, Tobias
    Ropinski, Timo
    NEURAL COMPUTING & APPLICATIONS, 2021, 33 (23): : 16773 - 16807
  • [23] Data-driven Estimation of Sinusoid Frequencies
    Izacard, Gautier
    Mohan, Sreyas
    Fernandez-Granda, Carlos
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019), 2019, 32
  • [24] Data-driven deep density estimation
    Patrik Puchert
    Pedro Hermosilla
    Tobias Ritschel
    Timo Ropinski
    Neural Computing and Applications, 2021, 33 : 16773 - 16807
  • [25] Constructing neural network sediment estimation models using a data-driven algorithm
    Kisi, Oezguer
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2008, 79 (01) : 94 - 103
  • [26] A federated data-driven evolutionary algorithm
    Xu, Jinjin
    Jin, Yaochu
    Du, Wenli
    Gu, Sai
    KNOWLEDGE-BASED SYSTEMS, 2021, 233 (233)
  • [27] An algorithm for data-driven bandwidth selection
    Comaniciu, D
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2003, 25 (02) : 281 - 288
  • [28] A framework for data-driven algorithm testing
    Funk, W
    Kirchner, D
    Security, Steganography, and Watermarking of Multimedia Contents VII, 2005, 5681 : 287 - 297
  • [29] A Model-Based and Data-Driven Integrated Temperature Estimation Method for PMSM
    Jin, Luhan
    Mao, Yao
    Wang, Xueqing
    Lu, Linlin
    Wang, Zheng
    IEEE TRANSACTIONS ON POWER ELECTRONICS, 2024, 39 (07) : 8553 - 8561
  • [30] Data-Driven Hybrid Internal Temperature Estimation Approach for Battery Thermal Management
    Liu, Kailong
    Li, Kang
    Peng, Qiao
    Guo, Yuanjun
    Zhang, Li
    COMPLEXITY, 2018,