Convex Relaxations and Approximations of Chance-Constrained AC-OPF Problems

被引:24
|
作者
Halilbasic, Lejla [1 ]
Pinson, Pierre [1 ]
Chatzivasileiadis, Spyros [1 ]
机构
[1] Tech Univ Denmark, Dept Elect Engn, DK-2800 Lyngby, Denmark
关键词
Chance-constrained AC-OPF; convex relaxations; second order cone programming; AC feasibility recovery; OPTIMAL POWER-FLOW;
D O I
10.1109/TPWRS.2018.2874072
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper deals with the impact of linear approximations for the unknown nonconvex confidence region of chance-constrained ac optimal power flow problems. Such approximations are required for the formulation of tractable chance constraints. In this context, we introduce the first formulation of a chance-constrained second-order cone (SOC) OPF. The proposed formulation provides convergence guarantees due to its convexity, while it demonstrates high computational efficiency. Combined with an ac feasibility recovery, it is able to identify better solutions than chance-constrained nonconvex ac-OPF formulations. To the best of our knowledge, this paper is the first to perform a rigorous analysis of the ac feasibility recovery procedures for robust SOC-OPF problems. We identify the issues that arise from the linear approximations, and by using a reformulation of the quadratic chance constraints, we introduce new parameters able to reshape the approximation of the confidence region. We demonstrate our method on the IEEE 118-bus system.
引用
收藏
页码:1459 / 1470
页数:12
相关论文
共 50 条
  • [1] Distributionally Robust Chance-Constrained Approximate AC-OPF With Wasserstein Metric
    Duan, Chao
    Fang, Wanliang
    Jiang, Lin
    Yao, Li
    Liu, Jun
    [J]. IEEE TRANSACTIONS ON POWER SYSTEMS, 2018, 33 (05) : 4924 - 4936
  • [2] Convex relaxations of chance constrained optimization problems
    Ahmed, Shabbir
    [J]. OPTIMIZATION LETTERS, 2014, 8 (01) : 1 - 12
  • [3] Proactive management of distribution grids with chance-constrained linearized AC OPF
    Soares, Tiago
    Bessa, Ricardo J.
    [J]. INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2019, 109 : 332 - 342
  • [4] Convex relaxations of chance constrained optimization problems
    Shabbir Ahmed
    [J]. Optimization Letters, 2014, 8 : 1 - 12
  • [5] Distributionally Robust Chance-Constrained AC-OPF for Integrating Wind Energy Through Multi-Terminal VSC-HVDC
    Yao, Li
    Wang, Xiuli
    Li, Yujun
    Duan, Chao
    Wu, Xiong
    [J]. IEEE TRANSACTIONS ON SUSTAINABLE ENERGY, 2020, 11 (03) : 1414 - 1426
  • [6] Convex Relaxations of Chance Constrained AC Optimal Power Flow
    Venzke, Andreas
    Halilbasic, Lejla
    Markovic, Uros
    Hug, Gabriela
    Chatzivasileiadis, Spyros
    [J]. IEEE TRANSACTIONS ON POWER SYSTEMS, 2018, 33 (03) : 2829 - 2841
  • [7] Convex Relaxations of Chance Constrained AC Optimal Power Flow
    Venzke, Andreas
    Halilbasic, Lejla
    Markovic, Uros
    Hug, Gabriela
    Chatzivasileiadis, Spyros
    [J]. 2018 IEEE POWER & ENERGY SOCIETY GENERAL MEETING (PESGM), 2018,
  • [8] Fast Data-Driven Chance Constrained AC-OPF using Hybrid Sparse Gaussian Processes
    Mitrovic, Mile
    Lukashevich, Aleksandr
    Vorobev, Petr
    Terzija, Vladimir
    Maximov, Yury
    Deka, Deepjyoti
    [J]. 2023 IEEE BELGRADE POWERTECH, 2023,
  • [9] The Price of Uncertainty: Chance-constrained OPF vs. In-hindsight OPF
    Muehlpfordt, Tillmann
    Hagenmeyer, Veit
    Faulwasser, Timm
    [J]. 2018 POWER SYSTEMS COMPUTATION CONFERENCE (PSCC), 2018,
  • [10] Chance-Constrained OPF: A Distributed Method With Confidentiality Preservation
    Jia, Mengshuo
    Hug, Gabriela
    Su, Yifan
    Shen, Chen
    [J]. IEEE TRANSACTIONS ON POWER SYSTEMS, 2023, 38 (04) : 3373 - 3387