The Price of Uncertainty: Chance-constrained OPF vs. In-hindsight OPF

被引:0
|
作者
Muehlpfordt, Tillmann [1 ]
Hagenmeyer, Veit [1 ]
Faulwasser, Timm [1 ]
机构
[1] Karlsruhe Inst Technol, Inst Automat & Appl Informat, Karlsruhe, Germany
关键词
chance constraints; optimal power flow; optimization; uncertainty;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The operation of power systems has become more challenging due to feed-in of volatile renewable energy sources. Chance-constrained optimal power flow (ccoPF) is one possibility to explicitly consider volatility via probabilistic uncertainties resulting in mean-optimal feedback policies. These policies are computed before knowledge of the realization of the uncertainty is available. On the other hand, the hypothetical case of computing the power injections knowing every realization beforehand-called in-hindsight OPF (hOPF)-cannot be outperformed w.r.t. costs and constraint satisfaction. In this paper, we investigate how ccoPF feedback relates to the full-information hoPF. To this end, we introduce different dimensions of the price of uncertainty. Using mild assumptions on the uncertainty we present sufficient conditions when ccoPF is identical to hoPF. We suggest using the total variational distance of probability densities to quantify the performance gap of hoPF and ccoPF. Finally, we draw upon a tutorial example to illustrate our results.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Chance-Constrained OPF: A Distributed Method With Confidentiality Preservation
    Jia, Mengshuo
    Hug, Gabriela
    Su, Yifan
    Shen, Chen
    [J]. IEEE TRANSACTIONS ON POWER SYSTEMS, 2023, 38 (04) : 3373 - 3387
  • [2] Proactive management of distribution grids with chance-constrained linearized AC OPF
    Soares, Tiago
    Bessa, Ricardo J.
    [J]. INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2019, 109 : 332 - 342
  • [3] Convex Relaxations and Approximations of Chance-Constrained AC-OPF Problems
    Halilbasic, Lejla
    Pinson, Pierre
    Chatzivasileiadis, Spyros
    [J]. IEEE TRANSACTIONS ON POWER SYSTEMS, 2019, 34 (02) : 1459 - 1470
  • [4] Chance-Constrained OPF Based on Polynomials Approximation and Cornish–Fisher Expansion
    Yunfeng Cai
    Liang Wang
    Jianhua Zhou
    Yongzhi Zhou
    [J]. Iranian Journal of Science and Technology, Transactions of Electrical Engineering, 2020, 44 : 1357 - 1367
  • [5] Chance-Constrained OPF Based on Polynomials Approximation and Cornish-Fisher Expansion
    Cai, Yunfeng
    Wang, Liang
    Zhou, Jianhua
    Zhou, Yongzhi
    [J]. IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY-TRANSACTIONS OF ELECTRICAL ENGINEERING, 2020, 44 (04) : 1357 - 1367
  • [6] Chance-Constrained OPF in Droop-Controlled Microgrids With Power Flow Routers
    Chen, Tianlun
    Song, Yue
    Hill, David J.
    Lam, Albert Y. S.
    [J]. IEEE TRANSACTIONS ON SMART GRID, 2022, 13 (04) : 2601 - 2613
  • [7] Distributionally Robust Chance-Constrained Approximate AC-OPF With Wasserstein Metric
    Duan, Chao
    Fang, Wanliang
    Jiang, Lin
    Yao, Li
    Liu, Jun
    [J]. IEEE TRANSACTIONS ON POWER SYSTEMS, 2018, 33 (05) : 4924 - 4936
  • [8] Non-parametric Joint Chance-Constrained OPF via Maximum Mean Discrepancy Penalization
    Pareek, Parikshit
    Nguyen, Hung D.
    [J]. ELECTRIC POWER SYSTEMS RESEARCH, 2022, 212
  • [9] Hierarchical Management of Distributed Energy Resources Using Chance-Constrained OPF and Extremum Seeking Control
    Chen, Yue
    Lin, Yashen
    [J]. 2019 AMERICAN CONTROL CONFERENCE (ACC), 2019, : 1280 - 1287
  • [10] Data quality aware chance-constrained DC-OPF: a variational Bayesian Gaussian mixture approach
    Wu, Xiong
    Wang, Xiuli
    Duan, Chao
    Dang, Can
    Yao, Li
    Fan, Yue
    Song, Rui
    [J]. IET GENERATION TRANSMISSION & DISTRIBUTION, 2020, 14 (17) : 3412 - 3421