Plant proteome changes under abiotic stress - Contribution of proteomics studies to understanding plant stress response

被引:569
|
作者
Kosova, Klara [1 ]
Vitamvas, Pavel [1 ]
Prasil, Ilja Tom [1 ]
Renaut, Jenny [2 ]
机构
[1] Crop Res Inst, Dept Genet & Plant Breeding, Prague 16106 6, Ruzyne, Czech Republic
[2] Ctr Rech Publ, L-4422 Belvaux, Luxembourg
关键词
Plant proteome; Abiotic stress; Stress tolerance; Protein biomarkers; DIFFERENTIALLY EXPRESSED PROTEINS; SALT STRESS; COLD-ACCLIMATION; ARABIDOPSIS-THALIANA; RICE ROOTS; MASS-SPECTROMETRY; DROUGHT STRESS; POPLAR LEAVES; HEAT-STRESS; 2-DIMENSIONAL ELECTROPHORESIS;
D O I
10.1016/j.jprot.2011.02.006
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Plant acclimation to stress is associated with profound changes in proteome composition. Since proteins are directly involved in plant stress response, proteomics studies can significantly contribute to unravel the possible relationships between protein abundance and plant stress acclimation. In this review, proteomics studies dealing with plant response to a broad range of abiotic stress factors-cold, heat, drought, waterlogging, salinity, ozone treatment, hypoxia and anoxia, herbicide treatments, inadequate or excessive light conditions, disbalances in mineral nutrition, enhanced concentrations of heavy metals, radioactivity and mechanical wounding are discussed. Most studies have been carried out on model plants Arabidopsis thaliana and rice due to large protein sequence databases available; however, the variety of plant species used for proteomics analyses is rapidly increasing. Protein response pathways shared by different plant species under various stress conditions (glycolytic pathway, enzymes of ascorbate-glutathione cycle, accumulation of LEA proteins) as well as pathways unique to a given stress are discussed. Results from proteomics studies are interpreted with respect to physiological factors determining plant stress response. In conclusion, examples of application of proteornics studies in search for protein markers underlying phenotypic variation in physiological parameters associated with plant stress tolerance are given. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:1301 / 1322
页数:22
相关论文
共 50 条
  • [41] Research on the Rice Proteome: The Contribution of Proteomics Technology in the Creation of Abiotic Stress-Tolerant Plants
    Setsuko Komatsu
    Rice, 2008, 1 : 154 - 165
  • [42] Plant Biotic Stress and Proteomics
    Sergeant, Kjell
    Renaut, Jenny
    CURRENT PROTEOMICS, 2010, 7 (04) : 275 - 297
  • [43] Genomics, Proteomics, and Metabolomics Approaches to Improve Abiotic Stress Tolerance in Tomato Plant
    Naik, Bindu
    Kumar, Vijay
    Rizwanuddin, Sheikh
    Chauhan, Mansi
    Choudhary, Megha
    Gupta, Arun Kumar
    Kumar, Pankaj
    Kumar, Vivek
    Saris, Per Erik Joakim
    Rather, Muzamil Ahmad
    Bhuyan, Shuvam
    Neog, Panchi Rani
    Mishra, Sadhna
    Rustagi, Sarvesh
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2023, 24 (03)
  • [44] Understanding abiotic stress tolerance mechanisms: Recent studies on stress response in rice
    Gao, Ji-Ping
    Chao, Dai-Yin
    Lin, Hong-Xuan
    JOURNAL OF INTEGRATIVE PLANT BIOLOGY, 2007, 49 (06) : 742 - 750
  • [45] Melatonin Role in Plant Growth and Physiology under Abiotic Stress
    Ahmad, Irshad
    Zhu, Guanglong
    Zhou, Guisheng
    Liu, Jiao
    Younas, Muhammad Usama
    Zhu, Yiming
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2023, 24 (10)
  • [46] Plant Aquaporin Responses to Mycorrhizal Symbiosis under Abiotic Stress
    Cheng, Hui-Qian
    Ding, Yu-E
    Shu, Bo
    Zou, Ying-Ning
    Wu, Qiang-Sheng
    Kuca, Kamil
    INTERNATIONAL JOURNAL OF AGRICULTURE AND BIOLOGY, 2020, 23 (04) : 786 - 794
  • [47] Applications of metabolomics in the research of soybean plant under abiotic stress
    Feng, Zhe
    Ding, Chengqiao
    Li, Weihao
    Wang, Dachen
    Cui, Di
    FOOD CHEMISTRY, 2020, 310 (310)
  • [48] Plant sugars: Homeostasis and transport under abiotic stress in plants
    Saddhe, Ankush A.
    Manuka, Rakesh
    Penna, Suprasanna
    PHYSIOLOGIA PLANTARUM, 2021, 171 (04) : 739 - 755
  • [49] Root exudates impact plant performance under abiotic stress
    Chai, Yen Ning
    Schachtman, Daniel P.
    TRENDS IN PLANT SCIENCE, 2022, 27 (01) : 80 - 91
  • [50] Role of nanofertilization in plant nutrition under abiotic stress conditions
    Dai, Zhicong
    Huang, Zhiyun
    Hu, Die
    Naz, Misbah
    Afzal, Muhammad Rahil
    Raza, Muhammad Ammar
    Benavides-Mendoza, Adalberto
    Tariq, Muhammad
    Qi, Shanshan
    Du, Daolin
    Chemosphere, 2024, 366