Theoretical prediction of eliminating the buffer layer and achieving charge neutrality for epitaxial graphene on 6H-SiC(0001) via boron compound intercalations

被引:5
|
作者
Luo, Xingyun [1 ,2 ]
Sun, Xiucai [1 ,2 ]
Li, Yanlu [1 ,2 ]
Yu, Fapeng [1 ,2 ,3 ]
Sun, Li [1 ,2 ]
Cheng, Xiufeng [1 ,2 ]
Zhao, Xian [1 ,2 ,3 ]
机构
[1] Shandong Univ, State Key Lab Crystal Mat, Jinan 250100, Peoples R China
[2] Shandong Univ, Inst Crystal Mat, Jinan 250100, Peoples R China
[3] Shandong Univ, Ctr Opt Res & Engn Shandong Univ, Jinan 250100, Peoples R China
关键词
GENERALIZED GRADIENT APPROXIMATION; CHEMICAL-VAPOR-DEPOSITION; TOTAL-ENERGY CALCULATIONS; ELECTRONIC-STRUCTURE; TRANSISTORS; PRESSURE; CRYSTAL; SILICON;
D O I
10.1016/j.carbon.2020.01.095
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Charge neutrality is vital to improve the performance of electronic devices based on epitaxial graphene grown on SiC substrates. First-principle calculations are applied to predict the charge-neutral epitaxial graphene by intercalating B3C5 layer between the SiC substrate and a buffer carbon layer. The electronic structure of graphene is found to be modulated by adjusting the B:C ratio of a series of BxCy intercalation layers. The buffer layer is eliminated and the intrinsic n-doping of as-grown graphene is avoided by preventing the charge transfer between graphene and the SiC substrate. The calculated surface energy of the B3C5-intercalated structure shows considerable stability as compared to the other intercalated structures over a wide range of temperatures and pressures under B-rich conditions. These findings will promote the practical application of B3C5-intercalated epitaxial graphene on SiC(0001) as a core element of microelectronic devices at high temperature, or pressure sensors at variable pressure conditions. (C) 2020 Elsevier Ltd. All rights reserved.
引用
收藏
页码:323 / 330
页数:8
相关论文
共 50 条
  • [31] Controlled covalent modification of epitaxial single layer graphene on 6H-SiC (0001) with aryliodonium salts using electrochemical methods
    Stevenson, K. J.
    Veneman, P. A.
    Gearba, R. I.
    Mueller, K. M.
    Holliday, B. J.
    Ohta, T.
    Chan, C. K.
    FARADAY DISCUSSIONS, 2014, 172 : 273 - 291
  • [32] Thermal transport at 6H-SiC/graphene buffer layer/GaN heterogeneous interface
    Yang, Bing
    Yang, Haiying
    Li, Tianbo
    Yang, Jianming
    Yang, Ping
    APPLIED SURFACE SCIENCE, 2021, 536
  • [33] Growth of AlN single crystals on 6H-SiC (0001) substrates with AlN MOCVD buffer layer
    Zuo, Sibin
    Wang, Jun
    Chen, Xiaolong
    Jin, Shifeng
    Jiang, Liangbao
    Bao, Huiqiang
    Guo, Liwei
    Sun, Wei
    Wang, Wenjun
    CRYSTAL RESEARCH AND TECHNOLOGY, 2012, 47 (02) : 139 - 144
  • [34] A TEM evaluation of ELOG GaN grown on AlN buffer layer by HVPE on (0001) 6H-SiC
    Ruterana, P
    Beaumont, B
    Gibart, P
    Melnik, Y
    PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 1999, 216 (01): : 697 - 700
  • [35] First-principles investigation of an epitaxial silicon oxynitride layer on a 6H-SiC(0001) surface
    Krueger, Peter
    Baumeier, Bjoern
    Pollmann, Johannes
    PHYSICAL REVIEW B, 2008, 77 (08):
  • [36] Morphology and structure of epitaxial graphene grown on 6H-SiC (0001) substrates by modified argon-assisted epitaxial method
    Hao, Xin
    Chen, Yuanfu
    Wang, Zegao
    Liu, Jingbo
    Qi, Fei
    MATERIALS LETTERS, 2014, 115 : 144 - 146
  • [37] Thickness dependent Raman spectra and interfacial interaction between Ag and epitaxial graphene on 6H-SiC(0001)
    Liu, Xiangtai
    Fang, Qinglong
    Hu, Tingwei
    Ma, Dayan
    Zhang, Xiaohe
    Liu, Shuai
    Ma, Fei
    Xu, Kewei
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2018, 20 (08) : 5964 - 5974
  • [38] First-principles study of preferential sites of hydrogen incorporated in epitaxial graphene on 6H-SiC(0001)
    Lee, Bora
    Han, Seungwu
    Kim, Yong-Sung
    PHYSICAL REVIEW B, 2010, 81 (07):
  • [39] Growth mechanism for epitaxial graphene on vicinal 6H-SiC(0001) surfaces: A scanning tunneling microscopy study
    Hupalo, M.
    Conrad, E. H.
    Tringides, M. C.
    PHYSICAL REVIEW B, 2009, 80 (04):
  • [40] Possibility of strain control in AlN layer grown by MOVPE on (0001) 6H-SiC with GaN/AlN buffer
    Kurimoto, M
    Nakada, T
    Ishihara, Y
    Shibata, M
    Takano, T
    Yamamoto, J
    Honda, T
    Kawanishi, H
    PHYSICA STATUS SOLIDI A-APPLIED RESEARCH, 1999, 176 (01): : 665 - 669