Interpolation properties of C1 quadratic splines on hexagonal cells

被引:1
|
作者
Allen, Larry
Borst, Katherine
Claiborne, Brittany
Kolesnikov, Alexei
Pilewski, Katherine
机构
关键词
Spline; Unconfinable vertex; Interpolation; Projective geometry; BIVARIATE; SPACES;
D O I
10.1016/j.cagd.2016.01.001
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Let Delta(n) be a cell with a single interior vertex and n boundary vertices v(1), ..., v(n). Say that Delta(n) has the interpolation property if for every, z(1), ...., z(n) is an element of R there is a spline s is an element of S-2(1) (Delta(n)) such that s(v(i)) = z(i) for all i. We investigate under what conditions does a cell fail the interpolation property. The question is related to an open problem posed by Alfeld, Piper, and Schumaker in 1987 about characterization of unconfinable vertices. For hexagonal cells, we obtain a geometric criterion characterizing the failure of the interpolation property. As a corollary, we conclude that a hexagonal cell such that its six interior edges lie on three lines fails the interpolation property if and only if the cell is projectively equivalent to a regular hexagonal cell. Along the way, we obtain an explicit basis for the vector space S-2(1) (Delta(n)) for n >= 5. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:73 / 82
页数:10
相关论文
共 50 条
  • [1] Scattered data interpolation applying rational quadratic C1 splines on refined triangulations
    Schmidt, JW
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2000, 80 (01): : 27 - 33
  • [2] On the approximation power of bivariate quadratic C1 splines
    Dagnino, C
    Lamberti, P
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2001, 131 (1-2) : 321 - 332
  • [3] Lagrange interpolation by C1 cubic splines on triangulated quadrangulations
    Nürnberger, G
    Schumaker, LL
    Zeilfelder, F
    [J]. ADVANCES IN COMPUTATIONAL MATHEMATICS, 2004, 21 (3-4) : 357 - 380
  • [4] Optimal Lagrange interpolation by quartic C1 splines on triangulations
    Chui, C. K.
    Hecklin, G.
    Nuernberger, G.
    Zeilfelder, F.
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2008, 216 (02) : 344 - 363
  • [5] Local lagrange interpolation by bivariate C1 cubic splines
    Nürnberger, G
    Schumaker, LL
    Zeilfelder, R
    [J]. MATHEMATICAL METHODS FOR CURVES AND SURFACES: OSLO 2000, 2001, : 393 - 403
  • [6] Lagrange Interpolation by C1 Cubic Splines on Triangulated Quadrangulations
    Günther Nürnberger
    Larry L. Schumaker
    Frank Zeilfelder
    [J]. Advances in Computational Mathematics, 2004, 21 : 357 - 380
  • [7] Stable approximation and interpolation with C1 quartic bivariate splines
    Davydov, O
    Schumaker, LL
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2002, 39 (05) : 1732 - 1748
  • [8] INTERPOLATION BY QUADRATIC SPLINES
    DEMKO, S
    [J]. JOURNAL OF APPROXIMATION THEORY, 1978, 23 (04) : 392 - 400
  • [9] Local lagrange interpolation with cubic C1 splines on tetrahedral partitions
    Hecklin, Gero
    Nuernberger, Guenther
    Schumaker, Larry L.
    Zeilfelder, Frank
    [J]. JOURNAL OF APPROXIMATION THEORY, 2009, 160 (1-2) : 89 - 102
  • [10] Interactive Isosurfaces with Quadratic C1 Splines on Truncated Octahedral Partitions
    Marinc, Alexander
    Kalbe, Thomas
    Rhein, Markus
    Goesele, Michael
    [J]. VISUALIZATION AND DATA ANALYSIS 2011, 2011, 7868