A Resolution Mechanism for Prenex Godel Logic

被引:0
|
作者
Baaz, Matthias [1 ]
Fermueller, Christian G. [1 ]
机构
[1] Vienna Univ Technol, A-1060 Vienna, Austria
来源
COMPUTER SCIENCE LOGIC | 2010年 / 6247卷
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
First order Godel logic G(infinity)(,)(Delta) enriched with the projection operator Delta-in contrast to other important t-norrn based fuzzy logics, like Lukasiewicz and Product logic-is well known to be recursively axiomatizable. However, unlike in classical logic, testing (1-)unsatisfiability, i.e., checking whether a formula has no interpretation that assigns the designated truth value 1 to it, cannot be straightforwardly reduced to testing validity. We investigate the prenex fragment of G(infinity)(Delta) and show that, although standard Skolemization does not preserve 1-satisfiability, a specific Skolem form for satisfiability can be computed nevertheless. In a further step an efficient translation to a particular structural clause form is introduced. Finally, an adaption of a chaining calculus is shown to provide a basis for efficient, resolution style theorem proving.
引用
收藏
页码:67 / 79
页数:13
相关论文
共 50 条
  • [21] Exploring Extensions of Possibilistic Logic over Godel Logic
    Dellunde, Pilar
    Godo, Lluis
    Marchioni, Enrico
    SYMBOLIC AND QUANTITATIVE APPROACHES TO REASONING WITH UNCERTAINTY, PROCEEDINGS, 2009, 5590 : 923 - +
  • [22] Godel's demons - Logic and folly
    Kantor, Jean-Michel
    QUINZAINE LITTERAIRE, 2007, (956): : 25 - 25
  • [23] An analysis of Ruspini partitions in Godel logic
    Codara, Pietro
    D'Antona, Ottavio M.
    Marra, Vincenzo
    INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2009, 50 (06) : 825 - 836
  • [24] On Logic Embeddings and Godel's God
    Benzmueller, Christoph
    Paleo, Bruno Woltzenlogel
    RECENT TRENDS IN ALGEBRAIC DEVELOPMENT TECHNIQUES (WADT 2014), 2015, 9463 : 3 - 6
  • [25] A DPLL PROCEDURE FOR THE PROPOSITIONAL GODEL LOGIC
    Guller, Dusan
    ICFC 2010/ ICNC 2010: PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON FUZZY COMPUTATION AND INTERNATIONAL CONFERENCE ON NEURAL COMPUTATION, 2010, : 31 - 42
  • [26] The Demons of Godel. Logic and foolishness
    Zalamea, Fernando
    BOLETIN DE MATEMATICAS, 2009, 16 (01): : 79 - 81
  • [27] Hyperresolution for Godel logic with truth constants
    Guller, Dusan
    FUZZY SETS AND SYSTEMS, 2019, 363 : 1 - 65
  • [28] The Euler Characteristic of a Formula in Godel Logic
    Codara, Pietro
    D'Antona, Ottavio M.
    Marra, Vincenzo
    40TH IEEE INTERNATIONAL SYMPOSIUM ON MULTIPLE-VALUED LOGIC ISMVL 2010, 2010, : 108 - 112
  • [29] Proof Systems for a Godel Modal Logic
    Metcalfe, George
    Olivetti, Nicola
    AUTOMATED REASONING WITH ANALYTIC TABLEAUX AND RELATED METHODS, PROCEEDINGS, 2009, 5607 : 265 - +
  • [30] Godel's Introduction to Logic in 1939
    Cassou-Nogues, P.
    HISTORY AND PHILOSOPHY OF LOGIC, 2009, 30 (01) : 69 - 90