A Mixed Method for Maxwell Eigenproblem

被引:6
|
作者
Du, Zhijie [1 ]
Duan, Huoyuan [1 ]
机构
[1] Wuhan Univ, Sch Math & Stat, Wuhan 430072, Peoples R China
基金
中国国家自然科学基金;
关键词
Maxwell eigenproblem; Mixed finite element; Error estimates; FINITE-ELEMENT-METHOD; EIGENVALUE PROBLEM; APPROXIMATION; OPERATOR; FAMILY; REGULARIZATION; EQUATIONS;
D O I
10.1007/s10915-019-01111-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We propose a mixed method for the computation of the eigenvalues of the Maxwell eigenproblem, in terms of the electric field and a multiplier. The method allows the Lagrange elements of any order greater than or equal to two for the electric field, while a piecewise constant element always for the multiplier. We show that optimal error estimates yield for singular as well as smooth solutions. For the Maxwell eigenproblem in L-shaped domain which has singular and smooth eigenfunctions, we present numerical results for illustrating the effectiveness of the proposed method and for confirming the theoretical results.
引用
收藏
页数:37
相关论文
共 50 条
  • [1] A Mixed Method for Maxwell Eigenproblem
    Zhijie Du
    Huoyuan Duan
    Journal of Scientific Computing, 2020, 82
  • [2] MIXED FINITE ELEMENT METHOD WITH GAUSS'S LAW ENFORCED FOR THE MAXWELL EIGENPROBLEM
    Duan, Huoyuan
    Ma, Junhua
    Zou, J. U. N.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2021, 43 (06): : A3677 - A3712
  • [3] Mixed finite elements for Maxwell's eigenproblem: the question of spurious modes
    Boffi, D
    Brezzi, F
    Gastaldi, L
    ENUMATH 97 - 2ND EUROPEAN CONFERENCE ON NUMERICAL MATHEMATICS AND ADVANCED APPLICATIONS, 1998, : 180 - 187
  • [4] A Bochev-Dohrmann-Gunzburger stabilized method for Maxwell eigenproblem
    Du, Zhijie
    Duan, Huoyuan
    Wang, Can
    Zhang, Qiuyu
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2023, 39 (05) : 3811 - 3846
  • [5] Analysis of a direct discretization of the Maxwell eigenproblem
    Du, Zhijie
    Duan, Huoyuan
    APPLIED MATHEMATICS LETTERS, 2024, 149
  • [6] Discontinuous Galerkin approximation of the Maxwell eigenproblem
    Buffa, Annalisa
    Perugia, Ilaria
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2006, 44 (05) : 2198 - 2226
  • [7] The Mortar-Discontinuous Galerkin Method for the 2D Maxwell Eigenproblem
    Buffa, Annalisa
    Perugia, Ilaria
    Warburton, Tim
    JOURNAL OF SCIENTIFIC COMPUTING, 2009, 40 (1-3) : 86 - 114
  • [8] The Mortar-Discontinuous Galerkin Method for the 2D Maxwell Eigenproblem
    Annalisa Buffa
    Ilaria Perugia
    Tim Warburton
    Journal of Scientific Computing, 2009, 40 : 86 - 114
  • [9] Kernel Compensation Method for Maxwell Eigenproblem in Photonic Crystals With Mimetic Finite Difference Discretizations
    Jin, Chenhao
    Xia, Yinhua
    Xu, Yan
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2025, 41 (02)
  • [10] A MIXED METHOD FOR APPROXIMATING MAXWELL EQUATIONS
    MONK, PB
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 1991, 28 (06) : 1610 - 1634