A Bochev-Dohrmann-Gunzburger stabilized method for Maxwell eigenproblem

被引:1
|
作者
Du, Zhijie [1 ]
Duan, Huoyuan [1 ]
Wang, Can [1 ]
Zhang, Qiuyu [1 ]
机构
[1] Wuhan Univ, Sch Math & Stat, Wuhan 430072, Peoples R China
基金
中国国家自然科学基金;
关键词
Babuska-Osborn spectral theory; Bochev-Dohrmann-Gunzburger stabilization; edge element; Maxwell eigenproblem; mixed finite element method; MIXED FINITE-ELEMENTS; APPROXIMATIONS; H(DIV);
D O I
10.1002/num.23026
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A stabilized mixed finite element method is proposed for solving the Maxwell eigenproblem in terms of the electric field and the multiplier. Using the Bochev-Dohrmann-Gunzburger stabilization, we introduce some ad hoc stabilizing parameters for stabilizing the kernel-coercivity of the electric field and for stabilizing the inf-sup condition of the multiplier. We show that the stabilized mixed method is stable and convergent, with applications to some lowest-order edge elements on affine rectangular and cuboid mesh and on nonaffine quadrilateral mesh which fail in the classical methods. In particular, we prove the uniform convergence for guaranteeing spectral-correct and spurious-free discrete eigenmodes from the Babuska-Osborn spectral theory for compact operators. Numerical results have illustrated the performance of the stabilized method and confirmed the theoretical results obtained.
引用
收藏
页码:3811 / 3846
页数:36
相关论文
共 11 条
  • [1] A Bochev-Dohrmann-Gunzburger stabilization method for the primitive equations of the ocean
    Chacon Rebollo, Tomas
    Gomez Marmol, Macarena
    Sanchez Munoz, Isabel
    APPLIED MATHEMATICS LETTERS, 2013, 26 (04) : 413 - 417
  • [2] A Mixed Method for Maxwell Eigenproblem
    Du, Zhijie
    Duan, Huoyuan
    JOURNAL OF SCIENTIFIC COMPUTING, 2020, 82 (01)
  • [3] A Mixed Method for Maxwell Eigenproblem
    Zhijie Du
    Huoyuan Duan
    Journal of Scientific Computing, 2020, 82
  • [4] The Mortar-Discontinuous Galerkin Method for the 2D Maxwell Eigenproblem
    Buffa, Annalisa
    Perugia, Ilaria
    Warburton, Tim
    JOURNAL OF SCIENTIFIC COMPUTING, 2009, 40 (1-3) : 86 - 114
  • [5] MIXED FINITE ELEMENT METHOD WITH GAUSS'S LAW ENFORCED FOR THE MAXWELL EIGENPROBLEM
    Duan, Huoyuan
    Ma, Junhua
    Zou, J. U. N.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2021, 43 (06): : A3677 - A3712
  • [6] The Mortar-Discontinuous Galerkin Method for the 2D Maxwell Eigenproblem
    Annalisa Buffa
    Ilaria Perugia
    Tim Warburton
    Journal of Scientific Computing, 2009, 40 : 86 - 114
  • [7] Kernel Compensation Method for Maxwell Eigenproblem in Photonic Crystals With Mimetic Finite Difference Discretizations
    Jin, Chenhao
    Xia, Yinhua
    Xu, Yan
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2025, 41 (02)
  • [8] Stabilized mixed finite element method for a quasistatic Maxwell viscoelastic model
    Min, Ya
    Feng, Minfu
    APPLIED NUMERICAL MATHEMATICS, 2023, 193 : 22 - 42
  • [9] A stabilized finite element method on nonaffine grids for time-harmonic Maxwell's equations
    Du, Zhijie
    Duan, Huoyuan
    BIT NUMERICAL MATHEMATICS, 2023, 63 (04)
  • [10] A stabilized finite element method on nonaffine grids for time-harmonic Maxwell’s equations
    Zhijie Du
    Huoyuan Duan
    BIT Numerical Mathematics, 2023, 63