Error estimates for a contact problem with the Tresca friction or the simplified Coulomb friction in elastic materials by the element-free Galerkin method

被引:10
|
作者
Shen, Quan [1 ]
Ding, Rui [2 ]
Wang, Yu [2 ]
机构
[1] Soochow Univ, Sch Rail Transportat, Suzhou 215131, Peoples R China
[2] Soochow Univ, Sch Math Sci, Suzhou 215006, Peoples R China
关键词
Contact problems; Element-free Galerkin method; Elliptic variational inequality; Penalty method; Duality algorithm; WAVE-PROPAGATION; HP-FEM; APPROXIMATION; CONVERGENCE; EXISTENCE; FRACTURE;
D O I
10.1016/j.apm.2019.07.052
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This article discusses the error estimates for a contact problem with the Tresca friction or the simplified Coulomb friction in elastic materials by the element-free Galerkin method. The penalty method is adopted to deal with the clamped boundary conditions. The error estimates show that the convergence rate depends on the nodal spacing, the penalty factor and the largest degree of basis functions in the moving least-squares approximation. Numerical examples validate our theoretical results. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页码:690 / 708
页数:19
相关论文
共 50 条
  • [21] Virtual element method for simplified friction problem
    Wang, Fei
    Wei, Huayi
    APPLIED MATHEMATICS LETTERS, 2018, 85 : 125 - 131
  • [22] A quasistatic contact problem for an elastic perfectly plastic body with Tresca's friction
    Amassad, A
    Shillor, M
    Sofonea, M
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1999, 35 (01) : 95 - 109
  • [23] Finite element analysis of a static contact problem with Coulomb friction
    Hlaváček I.
    Applications of Mathematics, 2000, 45 (05) : 357 - 379
  • [24] Application of Extended Element-Free Galerkin Method to Nonlinear Problem
    Saitoh, Ayumu
    Itoh, Taku
    Matsui, Nobuyuki
    Kamitani, Atsushi
    IEEE TRANSACTIONS ON MAGNETICS, 2012, 48 (02) : 487 - 490
  • [25] The Error Estimates of the Interpolating Element-Free Galerkin Method for Two-Point Boundary Value Problems
    Wang, J. F.
    Hao, S. Y.
    Cheng, Y. M.
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2014, 2014
  • [26] Convergence analysis and error estimates of the element-free Galerkin method for a class of parabolic evolutionary variational inequalities
    Ding, Rui
    Shen, Quan
    Zhu, Zhengcheng
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2018, 75 (01) : 22 - 32
  • [27] A Hermite interpolation element-free Galerkin method for piezoelectric materials
    Ma, Xiao
    Zhou, Bo
    Xue, Shifeng
    JOURNAL OF INTELLIGENT MATERIAL SYSTEMS AND STRUCTURES, 2022, 33 (14) : 1802 - 1818
  • [28] Convergence analysis and error estimates of the element-free Galerkin method for the second kind of elliptic variational inequalities
    Ding, Rui
    Wang, Yu
    Shen, Quan
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2019, 78 (08) : 2584 - 2592
  • [29] Elastic contact problem with Coulomb friction and normal compliance in Orlicz spaces
    Paczka, Dariusz
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2019, 45 : 97 - 115
  • [30] Numerical error analysis for consolidation equation by element-free Galerkin method
    Zhang, Yanjun
    Wang, Enzhi
    Wang, Sijing
    Yanshilixue Yu Gongcheng Xuebao/Chinese Journal of Rock Mechanics and Engineering, 2004, 23 (18): : 3117 - 3121