On o-Equivalence of Niho Bent Functions

被引:2
|
作者
Budaghyan, Lilya [1 ]
Carlet, Claude [2 ,3 ]
Helleseth, Tor [1 ]
Kholosha, Alexander [1 ]
机构
[1] Univ Bergen, Dept Informat, N-5020 Bergen, Norway
[2] Univ Paris 08, Dept Math, CNRS, LAGA,UMR 7539, F-93526 St Denis, France
[3] Univ Paris 13, F-93526 St Denis, France
来源
关键词
Bent function; Boolean function; Maximum nonlinearity; Niho bent function; o-polynomials; Walsh transform;
D O I
10.1007/978-3-319-16277-5_9
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
As observed recently by the second author and S. Mesnager, the projective equivalence of o-polynomials defines, for Niho bent functions, an equivalence relation called o-equivalence. These authors also observe that, in general, the two o-equivalent Niho bent functions defined from an o-polynomial F and its inverse F-1 are EA-inequivalent. In this paper we continue the study of o-equivalence. We study a group of order 24 of transformations preserving o-polynomials which has been studied by Cherowitzo 25 years ago. We point out that three of the transformations he included in the group are not correct. We also deduce two more transformations preserving o-equivalence but providing potentially EA-inequivalent bent functions. We exhibit examples of infinite classes of o-polynomials for which at least three EA-inequivalent Niho bent functions can be derived.
引用
收藏
页码:155 / 168
页数:14
相关论文
共 50 条
  • [1] Relation between o-equivalence and EA-equivalence for Niho bent functions
    Davidova, Diana
    Budaghyan, Lilya
    Carlet, Claude
    Helleseth, Tor
    Ihringer, Ferdinand
    Penttila, Tim
    [J]. FINITE FIELDS AND THEIR APPLICATIONS, 2021, 72
  • [2] Equivalence classes of Niho bent functions
    Abdukhalikov, Kanat
    [J]. DESIGNS CODES AND CRYPTOGRAPHY, 2021, 89 (07) : 1509 - 1534
  • [3] Equivalence classes of Niho bent functions
    Kanat Abdukhalikov
    [J]. Designs, Codes and Cryptography, 2021, 89 : 1509 - 1534
  • [4] On Dillon's class H of bent functions, Niho bent functions and o-polynomials
    Carlet, Claude
    Mesnager, Sihem
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES A, 2011, 118 (08) : 2392 - 2410
  • [5] Niho Bent Functions from Quadratic o-Monomials
    Budaghyan, Lilya
    Kholosha, Alexander
    Carlet, Claude
    Helleseth, Tor
    [J]. 2014 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2014, : 1827 - 1831
  • [6] Univariate Niho Bent Functions From o-Polynomials
    Budaghyan, Lilya
    Kholosha, Alexander
    Carlet, Claude
    Helleseth, Tor
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2016, 62 (04) : 2254 - 2265
  • [7] Bent functions with 2′ Niho exponents
    Leander, Gregor
    Kholosha, Alexander
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2006, 52 (12) : 5529 - 5532
  • [8] Niho Bent Functions and Subiaco Hyperovals
    Helleseth, Tor
    Kholosha, Alexander
    Mesnager, Sihem
    [J]. THEORY AND APPLICATIONS OF FINITE FIELDS, 2012, 579 : 91 - +
  • [9] Further Results on Niho Bent Functions
    Budaghyan, Lilya
    Carlet, Claude
    Helleseth, Tor
    Kholosha, Alexander
    Mesnager, Sihem
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2012, 58 (11) : 6979 - 6985
  • [10] Construction of bent functions via Niho power functions
    Dobbertin, Hans
    Leander, Gregor
    Canteaut, Anne
    Carlet, Claude
    Felke, Patrick
    Gaborit, Philippe
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES A, 2006, 113 (05) : 779 - 798