Niho Bent Functions and Subiaco Hyperovals

被引:11
|
作者
Helleseth, Tor [1 ]
Kholosha, Alexander [1 ]
Mesnager, Sihem [2 ,3 ]
机构
[1] Univ Bergen, Dept Informat, POB 7800, N-5020 Bergen, Norway
[2] Univ Paris 08, Dept Math, F-93526 St Denis, France
[3] Univ Paris 13, F-93526 St Denis, France
来源
THEORY AND APPLICATIONS OF FINITE FIELDS | 2012年 / 579卷
关键词
D O I
10.1090/conm/579/11522
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, the relation between binomial Niho bent functions discovered by Dobbertin et al. and o-polynomials that give rise to the Subiaco class of hyperovals is found. This allows to expand the original class of bent functions in the case when m 2 (mod 4). It is also proven that one of the earlier discovered sporadic Niho bent functions, up to EA-equivalence, belongs to the known infinite class.
引用
收藏
页码:91 / +
页数:3
相关论文
共 50 条
  • [1] VANDERMONDE SETS, HYPEROVALS AND NIHO BENT FUNCTIONS
    Abdukhalikov, Kanat
    Ho, Duy
    ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2023, 17 (05) : 1235 - 1250
  • [2] Hyperovals and bent functions
    Abdukhalikov, Kanat
    EUROPEAN JOURNAL OF COMBINATORICS, 2019, 79 : 123 - 139
  • [3] Bent functions with 2′ Niho exponents
    Leander, Gregor
    Kholosha, Alexander
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2006, 52 (12) : 5529 - 5532
  • [4] Equivalence classes of Niho bent functions
    Kanat Abdukhalikov
    Designs, Codes and Cryptography, 2021, 89 : 1509 - 1534
  • [5] Equivalence classes of Niho bent functions
    Abdukhalikov, Kanat
    DESIGNS CODES AND CRYPTOGRAPHY, 2021, 89 (07) : 1509 - 1534
  • [6] Further Results on Niho Bent Functions
    Budaghyan, Lilya
    Carlet, Claude
    Helleseth, Tor
    Kholosha, Alexander
    Mesnager, Sihem
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2012, 58 (11) : 6979 - 6985
  • [7] Construction of bent functions via Niho power functions
    Dobbertin, Hans
    Leander, Gregor
    Canteaut, Anne
    Carlet, Claude
    Felke, Patrick
    Gaborit, Philippe
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2006, 113 (05) : 779 - 798
  • [8] On o-Equivalence of Niho Bent Functions
    Budaghyan, Lilya
    Carlet, Claude
    Helleseth, Tor
    Kholosha, Alexander
    ARITHMETIC OF FINITE FIELDS (WAIFI 2014), 2015, 9061 : 155 - 168
  • [9] On semi-bent functions with Niho exponents
    He YeFeng
    Ma WenPing
    Kang, Parminder
    SCIENCE CHINA-INFORMATION SCIENCES, 2012, 55 (07) : 1624 - 1630
  • [10] On semi-bent functions with Niho exponents
    YeFeng He
    WenPing Ma
    Parminder Kang
    Science China Information Sciences, 2012, 55 : 1624 - 1630