FOLIATED STRATIFIED SPACES AND A DE RHAM COMPLEX DESCRIBING INTERSECTION SPACE COHOMOLOGY

被引:0
|
作者
Banagl, Markus [1 ]
机构
[1] Heidelberg Univ, Math Inst, Neuenheimer Feld 205, D-69120 Heidelberg, Germany
关键词
SPECTRAL GEOMETRY; ARITHMETIC GROUPS; HOMOLOGY; SINGULARITIES; SHEAVES;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The method of intersection spaces associates cell-complexes depending on a perversity to certain types of stratified pseudomanifolds in such a way that Poincare duality holds between the ordinary rational cohomology groups of the cell-complexes associated to complementary perversities. The cohomology of these intersection spaces defines a cohomology theory HI for singular spaces, which is not isomorphic to intersection cohomology IH. Mirror symmetry tends to interchange IH and HI. The theory IH can be tied to type IIA string theory, while HI can be tied to IIB theory. For pseudomanifolds with stratification depth 1 and flat link bundles, the present paper provides a de Rham-theoretic description of the theory HI by a complex of global smooth differential forms on the top stratum. We prove that the wedge product of forms introduces a perversity-internal cup product on HI, for every perversity. Flat link bundles arise for example in foliated stratified spaces and in reductive Borel-Serre compactifications of locally symmetric spaces. A precise topological definition of the notion of a stratified foliation is given.
引用
收藏
页码:1 / 58
页数:58
相关论文
共 45 条
  • [1] MULTIPLICATIVE DE RHAM THEOREMS FOR RELATIVE AND INTERSECTION SPACE COHOMOLOGY
    Schloder, Franz Wilhelm
    Essig, J. Timo
    JOURNAL OF SINGULARITIES, 2019, 19 : 97 - 130
  • [2] REMARKS ON A KUNNETH FORMULA FOR FOLIATED DE RHAM COHOMOLOGY
    Bertelson, Melanie
    PACIFIC JOURNAL OF MATHEMATICS, 2011, 252 (02) : 257 - 274
  • [3] de Rham intersection cohomology for general perversities
    Saralegi-Aranguren, Martintxo
    ILLINOIS JOURNAL OF MATHEMATICS, 2005, 49 (03) : 737 - 758
  • [4] De Rham cohomology of rigid spaces
    Grosse-Klönne, E
    MATHEMATISCHE ZEITSCHRIFT, 2004, 247 (02) : 223 - 240
  • [5] De Rham cohomology of rigid spaces
    Elmar Große-Klönne
    Mathematische Zeitschrift, 2004, 247 : 223 - 240
  • [6] DE RHAM COHOMOLOGY OF AN ANALYTIC SPACE
    BLOOM, T
    HERRERA, M
    INVENTIONES MATHEMATICAE, 1969, 7 (04) : 275 - &
  • [7] On approximations of the de Rham complex and their cohomology
    Bavula, V. V.
    Akcin, H. Melis Tekin
    COMMUNICATIONS IN ALGEBRA, 2018, 46 (04) : 1447 - 1463
  • [8] De Rham cohomology of diffeological spaces and foliations
    Hector, G.
    Macias-Virgos, E.
    Sanmartin-Carbon, E.
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2011, 21 (3-4): : 212 - 220
  • [9] Superspace de Rham complex and relative cohomology
    Linch, William D., III
    Randall, Stephen
    JOURNAL OF HIGH ENERGY PHYSICS, 2015, (09): : 1 - 22
  • [10] Superspace de Rham complex and relative cohomology
    William D. Linch
    Stephen Randall
    Journal of High Energy Physics, 2015