Identifying vital nodes from local and global perspectives in complex networks

被引:87
|
作者
Ullah, Aman [1 ]
Wang, Bin [1 ]
Sheng, JinFang [1 ]
Long, Jun [1 ,2 ]
Khan, Nasrullah [3 ,4 ]
Sun, ZeJun [5 ]
机构
[1] Cent South Univ, Sch Comp Sci & Engn, Changsha 410083, Peoples R China
[2] Cent South Univ, Big Data Inst, Changsha 410083, Peoples R China
[3] Nanjing Univ Aeronaut & Astronaut, Coll Comp Sci & Technol, Nanjing 210016, Peoples R China
[4] COMSATS Univ Islamabad, Dept Comp Sci, Vehari Campus, Vehari 61100, Pakistan
[5] Pingdingshan Univ, Sch Informat Engn, Pingdingshan 467000, Peoples R China
关键词
Vital nodes; Global and local information; Complex networks; INFLUENTIAL SPREADERS; CENTRALITY; IDENTIFICATION; RANKING;
D O I
10.1016/j.eswa.2021.115778
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Recognition of vital nodes in complex networks retains great importance in the improvement of network's robustness and vulnerability. Consistent research proposed various approaches like local-structure-based methods, e.g., degree centrality, pagerank, etc., and global-structure-based methods, e.g., betweenness, closeness centrality, etc., to evaluate the concerned nodes. Though their performance is amazingly well, these methods have undergone some intrinsic limitations. For instance, local-structure-based methods lose some sort of global information and global-structure-based methods are too complicated to measure the important nodes, particularly in networks where sizes become large. To tackle these challenges, we propose a Local-and-Global Centrality (LGC) measuring algorithm to identify the vital nodes through handling local as well as global topological aspects of a network simultaneously. In order to assess the performance of the proposed algorithm with respect to the state-of-the-art methodologies, we performed experiments through LCG, Betweenness (BNC), Closeness (CNC), Gravity (GIC), Page-Rank (PRC), Eigenvector (EVC), Global and Local Structure (GLS), Global Structure Model (GSM), and Profit-leader (PLC) methods on differently sized real-world networks. Our experiments disclose that LGC outperformed many of the compared techniques.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Identifying vital nodes in complex networks based on information entropy, minimum dominating set and distance
    Lu, Pengli
    Chen, Wei
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2021, 35 (05):
  • [22] LFIC: Identifying Influential Nodes in Complex Networks by Local Fuzzy Information Centrality
    Zhang, Haotian
    Zhong, Shen
    Deng, Yong
    Cheong, Kang Hao
    IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2022, 30 (08) : 3284 - 3296
  • [23] Identifying Influential Nodes in Complex Networks via Semi-Local Centrality
    Dong, Jiali
    Ye, Fanghua
    Chen, Wuhui
    Wu, Jiajing
    2018 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS), 2018,
  • [24] Identifying influential nodes in complex networks based on improved local gravity model
    Wu, Yongqing
    Tang, Tianchang
    PRAMANA-JOURNAL OF PHYSICS, 2025, 99 (01):
  • [25] Influential nodes identification in complex networks based on global and local information
    杨远志
    胡敏
    黄泰愚
    Chinese Physics B, 2020, (08) : 664 - 670
  • [26] Integrating local and global information to identify influential nodes in complex networks
    Mukhtar, Mohd Fariduddin
    Abal Abas, Zuraida
    Baharuddin, Azhari Samsu
    Norizan, Mohd Natashah
    Fakhruddin, Wan Farah Wani Wan
    Minato, Wakisaka
    Rasib, Amir Hamzah Abdul
    Abidin, Zaheera Zainal
    Rahman, Ahmad Fadzli Nizam Abdul
    Anuar, Siti Haryanti Hairol
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [27] IDENTIFYING VITAL NODES IN COMPLEX NETWORK BY CONSIDERING MULTIPLEX INFLUENCES
    Ren, Tao
    Xu, Yanjie
    Liu, Lingjun
    Guo, Enming
    Wang, Pengyu
    ADVANCES IN COMPLEX SYSTEMS, 2023, 26 (04N05):
  • [28] Ranking influential nodes in complex networks based on local and global structures
    Liqing Qiu
    Jianyi Zhang
    Xiangbo Tian
    Applied Intelligence, 2021, 51 : 4394 - 4407
  • [29] Integrating local and global information to identify influential nodes in complex networks
    Mohd Fariduddin Mukhtar
    Zuraida Abal Abas
    Azhari Samsu Baharuddin
    Mohd Natashah Norizan
    Wan Farah Wani Wan Fakhruddin
    Wakisaka Minato
    Amir Hamzah Abdul Rasib
    Zaheera Zainal Abidin
    Ahmad Fadzli Nizam Abdul Rahman
    Siti Haryanti Hairol Anuar
    Scientific Reports, 13
  • [30] Ranking influential nodes in complex networks based on local and global structures
    Qiu, Liqing
    Zhang, Jianyi
    Tian, Xiangbo
    APPLIED INTELLIGENCE, 2021, 51 (07) : 4394 - 4407