Spiral Modes and the Observation of Quantized Conductance in the Surface Bands of Bismuth Nanowires

被引:4
|
作者
Huber, Tito E. [1 ]
Johnson, Scott [1 ]
Konopko, Leonid [2 ,3 ]
Nikolaeva, Albina [2 ,3 ]
Kobylianskaya, Anna [2 ]
Graf, Michael J. [4 ]
机构
[1] Howard Univ, Washington, DC 20059 USA
[2] Acad Sci, MD-2028 Kishinev, Moldova
[3] Int Lab High Magnet Fields & Low Temp, PL-53421 Wroclaw, Poland
[4] Boston Coll, Dept Phys, Chestnut Hill, MA 02467 USA
来源
SCIENTIFIC REPORTS | 2017年 / 7卷
基金
美国国家科学基金会; 瑞士国家科学基金会;
关键词
STATES; TRANSPORT;
D O I
10.1038/s41598-017-15476-5
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
When electrons are confined in two-dimensional materials, quantum-mechanical transport phenomena and high mobility can be observed. Few demonstrations of these behaviours in surface spin-orbit bands exist. Here, we report the observation of quantized conductance in the surface bands of 50-nm Bi nanowires. With increasing magnetic fields oriented along the wire axis, the wires exhibit a stepwise increase in conductance and oscillatory thermopower, possibly due to an increased number of high-mobility spiral surface modes based on spin-split bands. Surface high mobility is unexpected since bismuth is not a topological insulator and the surface is not suspended but in contact with the bulk. The oscillations enable us to probe the surface structure. We observe that mobility increases dramatically with magnetic fields because, owing to Lorentz forces, spiral modes orbit decreases in diameter pulling the charge carriers away from the surface. Our mobility estimates at high magnetic fields are comparable, within order of magnitude, to the mobility values reported for suspended graphene. Our findings represent a key step in understanding surface spin-orbit band electronic transport.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] THE BISMUTH SURFACE CONDUCTANCE AT AN ELECTROLYTIC CONTACT - THE BISMUTH FILM STRUCTURE AND SIZE EFFECTS
    BLUVSTEIN, AS
    MANSUROV, GN
    SYRCHINA, NV
    PETRII, OA
    TOLSTIKHINA, AL
    [J]. RUSSIAN JOURNAL OF ELECTROCHEMISTRY, 1993, 29 (09) : 929 - 933
  • [32] SURFACE CONDUCTANCE OF BISMUTH IN ELECTROLYTES - HALIDE ION ADSORPTION
    BLUVSHTEIN, AS
    MANSUROV, GN
    SYRCHINA, NV
    PETRII, OA
    [J]. RUSSIAN ELECTROCHEMISTRY, 1993, 29 (06): : 873 - 880
  • [33] Conductance, surface traps, and passivation in doped silicon nanowires
    Fernandez-Serra, M. -V.
    Adessi, Ch.
    Blase, X.
    [J]. NANO LETTERS, 2006, 6 (12) : 2674 - 2678
  • [34] Quantum Interference and Surface States Effects in Bismuth Nanowires
    Konopko, L.
    Huber, T.
    Nikolaeva, A.
    [J]. JOURNAL OF LOW TEMPERATURE PHYSICS, 2010, 158 (3-4) : 523 - 529
  • [35] Quantum Interference and Surface States Effects in Bismuth Nanowires
    L. Konopko
    T. Huber
    A. Nikolaeva
    [J]. Journal of Low Temperature Physics, 2010, 158 : 523 - 529
  • [36] Splitting of the Surface Phonon Modes in Wurtzite Nanowires
    Cros, Ana
    Wang, Jiangfeng
    Demangeot, Francois
    Pechou, Renaud
    Daudin, Bruno
    [J]. JAPANESE JOURNAL OF APPLIED PHYSICS, 2013, 52 (08)
  • [37] Quantum Interference in Bismuth Nanowires: Evidence for Surface Charges
    Konopko, L.
    Huber, T. E.
    Nikolaeva, A.
    [J]. JOURNAL OF LOW TEMPERATURE PHYSICS, 2011, 162 (5-6) : 524 - 528
  • [38] Quantum Interference in Bismuth Nanowires: Evidence for Surface Charges
    L. Konopko
    T. E. Huber
    A. Nikolaeva
    [J]. Journal of Low Temperature Physics, 2011, 162 : 524 - 528
  • [39] OBSERVATION OF SURFACE-MODES IN SWR
    DAVIES, M
    HEATH, M
    [J]. SOLID STATE COMMUNICATIONS, 1984, 51 (04) : 185 - 186
  • [40] DETECTION OF SURFACE BANDS OF BISMUTH, ANTIMONY AND BISMUTH-ANTIMONY ALLOYS BY TUNNELING SPECTROSCOPY
    MIRONOVA, GA
    PONOMAREV, YG
    ROSHTA, L
    [J]. FIZIKA TVERDOGO TELA, 1975, 17 (03): : 906 - 908