Spiral Modes and the Observation of Quantized Conductance in the Surface Bands of Bismuth Nanowires

被引:4
|
作者
Huber, Tito E. [1 ]
Johnson, Scott [1 ]
Konopko, Leonid [2 ,3 ]
Nikolaeva, Albina [2 ,3 ]
Kobylianskaya, Anna [2 ]
Graf, Michael J. [4 ]
机构
[1] Howard Univ, Washington, DC 20059 USA
[2] Acad Sci, MD-2028 Kishinev, Moldova
[3] Int Lab High Magnet Fields & Low Temp, PL-53421 Wroclaw, Poland
[4] Boston Coll, Dept Phys, Chestnut Hill, MA 02467 USA
来源
SCIENTIFIC REPORTS | 2017年 / 7卷
基金
美国国家科学基金会; 瑞士国家科学基金会;
关键词
STATES; TRANSPORT;
D O I
10.1038/s41598-017-15476-5
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
When electrons are confined in two-dimensional materials, quantum-mechanical transport phenomena and high mobility can be observed. Few demonstrations of these behaviours in surface spin-orbit bands exist. Here, we report the observation of quantized conductance in the surface bands of 50-nm Bi nanowires. With increasing magnetic fields oriented along the wire axis, the wires exhibit a stepwise increase in conductance and oscillatory thermopower, possibly due to an increased number of high-mobility spiral surface modes based on spin-split bands. Surface high mobility is unexpected since bismuth is not a topological insulator and the surface is not suspended but in contact with the bulk. The oscillations enable us to probe the surface structure. We observe that mobility increases dramatically with magnetic fields because, owing to Lorentz forces, spiral modes orbit decreases in diameter pulling the charge carriers away from the surface. Our mobility estimates at high magnetic fields are comparable, within order of magnitude, to the mobility values reported for suspended graphene. Our findings represent a key step in understanding surface spin-orbit band electronic transport.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Spiral Modes and the Observation of Quantized Conductance in the Surface Bands of Bismuth Nanowires
    Tito E. Huber
    Scott Johnson
    Leonid Konopko
    Albina Nikolaeva
    Anna Kobylianskaya
    Michael J. Graf
    [J]. Scientific Reports, 7
  • [2] Quantized conductance in bismuth nanowires at 4K
    Garcia, N
    Costa-Kramer, JL
    Olin, H
    [J]. NANOWIRES, 1997, 340 : 243 - 250
  • [3] Metallic nanowires: Formation and quantized conductance
    Olesen, L
    Hansen, K
    Laegsgaard, E
    Stensgaard, I
    Besenbacher, F
    [J]. NANOWIRES, 1997, 340 : 191 - 210
  • [4] Observation of quantized conductance in neutral matter
    Sebastian Krinner
    David Stadler
    Dominik Husmann
    Jean-Philippe Brantut
    Tilman Esslinger
    [J]. Nature, 2015, 517 : 64 - 67
  • [5] Observation of quantized conductance in neutral matter
    Krinner, Sebastian
    Stadler, David
    Husmann, Dominik
    Brantut, Jean-Philippe
    Esslinger, Tilman
    [J]. NATURE, 2015, 517 (7532) : 64 - U148
  • [6] Fabrication of stable metallic nanowires with quantized conductance
    Li, CZ
    Bogozi, A
    Huang, W
    Tao, NJ
    [J]. NANOTECHNOLOGY, 1999, 10 (02) : 221 - 223
  • [7] Controlling Quantized Steps in Conductance of Gold Zigzag Nanowires
    Oshima, Yoshifumi
    Kurui, Yoshihiko
    Takayanagi, Kunio
    [J]. APPLIED PHYSICS EXPRESS, 2011, 4 (05)
  • [8] On mesoscopic forces and quantized conductance in model metallic nanowires
    Yannouleas, C
    Landman, U
    [J]. JOURNAL OF PHYSICAL CHEMISTRY B, 1997, 101 (30): : 5780 - 5783
  • [9] Quantized electrical conductance of gold helical multishell nanowires
    Oshima, Yoshifumi
    Mouri, Keisuke
    Hirayama, Hiroyuki
    Takayanagi, Kunio
    [J]. JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2006, 75 (05)
  • [10] On mesoscopic forces and quantized conductance in model metallic nanowires
    Georgia Inst of Technology, Atlanta, United States
    [J]. J Phys Chem B, 30 (5780-5783):