Toward a compact THz local oscillator based on a quantum-cascade laser

被引:0
|
作者
Richter, H. [1 ]
Greiner-Baer, M. [1 ]
Pavlov, S. G. [1 ]
Semenov, A. D. [1 ]
Wienold, M. [2 ]
Schrottke, L. [2 ]
Giehler, M. [2 ]
Hey, R. [2 ]
Grahn, H. T. [2 ]
Huebers, H. -W. [1 ,3 ]
机构
[1] German Aerosp Ctr DLR, Inst Planetary Res, Rutherfordstr 2, D-12489 Berlin, Germany
[2] Paul Drude Inst Festkorperelect, D-10117 Berlin, Germany
[3] Tech Univ Berlin, Inst Opt & Atomare Phys, D-10623 Berlin, Germany
关键词
HETERODYNE RECEIVER; TERAHERTZ; GREAT;
D O I
10.1117/12.856917
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Heterodyne spectroscopy of molecular rotational lines and atomic fine-structure lines is a powerful tool in astronomy and planetary research. One example is the OI fine structure line at 4.7 THz. This is a main target for the observation with GREAT, the German Receiver for Astronomy at Terahertz Frequencies, which will be operated on board of SOFIA. We report on the development of a compact, easy-to-use source, which combines a quantum-cascade laser (QCL) with a compact, low-input-power Stirling cooler. This work is part of the local-oscillator development for GREAT/SOFIA. The QCL, which is based on a two-miniband design, has been developed for high output power and low electrical pump power. Efficient carrier injection is achieved by resonant longitudinal optical phonon scattering. The amount of generated heat complies with the cooling capacity of the Stirling cooler. The whole system weighs less than 15 kg including cooler, power supplies etc. The output power is above 1 mW. With an appropriate optical beam shaping, the emission profile of the laser becomes a fundamental Gaussian one. Sub-MHz frequency accuracy can be achieved by locking the emission of the QCL to a molecular resonance.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] GaAs-based quantum-cascade laser diodes
    Anders, S
    Gornik, E
    Schrenk, W
    Strasser, G
    2003 INTERNATIONAL CONFERENCE INDIUM PHOSPHIDE AND RELATED MATERIALS, CONFERENCE PROCEEDINGS, 2003, : 235 - 238
  • [32] 3 THz quantum-cascade laser with metallic waveguide based on resonant-phonon depopulation scheme
    Zubov, F., I
    Ikonnikov, A., V
    Maremyanin, K., V
    Morozov, S., V
    Gavrilenko, V., I
    Pavlov, A. Yu
    Shchavruk, N., V
    Khabibulin, R. A.
    Reznik, R. R.
    Cirlin, G. E.
    Zhukov, A. E.
    Dubinov, A. A.
    Alferov, Zh, I
    3RD INTERNATIONAL CONFERENCE TERAHERTZ AND MICROWAVE RADIATION: GENERATION, DETECTION AND APPLICATIONS (TERA-2018), 2018, 195
  • [33] Hot electron bolometer heterodyne receiver with a 4.7-THz quantum cascade laser as a local oscillator
    Kloosterman, J. L.
    Hayton, D. J.
    Ren, Y.
    Kao, T. Y.
    Hovenier, J. N.
    Gao, J. R.
    Klapwijk, T. M.
    Hu, Q.
    Walker, C. K.
    Reno, J. L.
    APPLIED PHYSICS LETTERS, 2013, 102 (01)
  • [34] A compact quantum-cascade laser based spectrometer for monitoring the concentrations of methane and nitrous oxide in the troposphere
    Wright, S.
    Duxbury, G.
    Langford, N.
    APPLIED PHYSICS B-LASERS AND OPTICS, 2006, 85 (2-3): : 243 - 249
  • [35] Compact heterodyne receiver at 2.8 THz based on a quantum cascade laser and a superconducting bolometer
    Yang, ZQ
    Hajenius, M
    Hovenier, JN
    Baryshev, A
    Baselmans, JJA
    Gao, JR
    Klapwijk, TM
    Adam, AJL
    Klaassen, TO
    Williams, BS
    Kumar, S
    Hu, Q
    Reno, JL
    IRMMW-THZ2005: THE JOINT 30TH INTERNATIONAL CONFERENCE ON INFRARED AND MILLIMETER WAVES AND 13TH INTERNATIONAL CONFERENCE ON TERAHERTZ ELECTRONICS, VOLS 1 AND 2, 2005, : 465 - 466
  • [36] Design of Laser Transition Oscillator Strength for THz Quantum Cascade Lasers
    Fathololoumi, S.
    Dupont, E.
    Laframboise, S. R.
    Wasilewski, Z. R.
    Ban, D.
    Liu, H. C.
    2011 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2011,
  • [37] Monte Carlo Simulations of THz Quantum-Cascade Lasers
    Manenti, M.
    Compagnone, F.
    Di Carlo, A.
    Lugli, P.
    JOURNAL OF COMPUTATIONAL ELECTRONICS, 2003, 2 (2-4) : 433 - 437
  • [38] Photonic bandstructure engineering of THz quantum-cascade lasers
    Benz, A.
    Brandstetter, M.
    Deutsch, C.
    Unterrainer, K.
    Detz, H.
    Andrews, A. M.
    Klang, P.
    Schrenk, W.
    Strasser, G.
    APPLIED PHYSICS LETTERS, 2011, 99 (20)
  • [39] Monte Carlo Simulations of THz Quantum-Cascade Lasers
    M. Manenti
    F. Compagnone
    A. Di Carlo
    P. Lugli
    Journal of Computational Electronics, 2003, 2 : 433 - 437
  • [40] Compact model for the efficient simulation of the optical gain and transport properties in THz quantum-cascade lasers
    Schrottke, L.
    Giehler, M.
    Wienold, M.
    Hey, R.
    Grahn, H. T.
    SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2010, 25 (04)