Multimode optomechanical dynamics in a cavity with avoided crossings

被引:61
|
作者
Lee, D. [1 ]
Underwood, M. [1 ]
Mason, D. [1 ]
Shkarin, A. B. [1 ]
Hoch, S. W. [1 ]
Harris, J. G. E. [1 ,2 ]
机构
[1] Yale Univ, Dept Phys, New Haven, CT 06511 USA
[2] Yale Univ, Dept Appl Phys, New Haven, CT 06511 USA
来源
NATURE COMMUNICATIONS | 2015年 / 6卷
基金
美国国家科学基金会;
关键词
MICROWAVE; CONVERSION; MOTION; NOISE; LIGHT;
D O I
10.1038/ncomms7232
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Cavity optomechanics offers powerful methods for controlling optical fields and mechanical motion. A number of proposals have predicted that this control can be extended considerably in devices where multiple cavity modes couple to each other via the motion of a single mechanical oscillator. Here we study the dynamic properties of such a multimode optomechanical device, in which the coupling between cavity modes results from mechanically induced avoided crossings in the cavity's spectrum. Near the avoided crossings we find that the optical spring shows distinct features that arise from the interaction between cavity modes. Precisely at an avoided crossing, we show that the particular form of the optical spring provides a classical analogue of a quantum non-demolition measurement of the intracavity photon number. The mechanical oscillator's Brownian motion, an important source of noise in these measurements, is minimized by operating the device at cryogenic temperature (500 mK).
引用
收藏
页数:7
相关论文
共 50 条
  • [41] Stark resonances of the Yukawa potential: Energies and widths, crossings and avoided crossings
    Pawlak, Mariusz
    Bylicki, Miroslaw
    PHYSICAL REVIEW A, 2011, 83 (02):
  • [42] Dynamics of an atomic system associated with a cavity-optomechanical system
    Alotiabi, Maged Faihan
    Khalil, E. M.
    Abd-Rabbou, M. Y.
    RESULTS IN PHYSICS, 2022, 37
  • [43] Optomechanical dynamics in detuned whispering-gallery modes cavity
    Chen, H. J.
    Mi, X. W.
    OPTICS COMMUNICATIONS, 2012, 285 (05) : 673 - 679
  • [44] An Egorov Theorem for Avoided Crossings of Eigenvalue Surfaces
    Kammerer, Clotilde Fermanian
    Lasser, Caroline
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2017, 353 (03) : 1011 - 1057
  • [45] SINGULAR BEHAVIOR AT AVOIDED CROSSINGS IN AN ITERATIVE PERTURBATION
    XU, GO
    WANG, WG
    YANG, YT
    PHYSICAL REVIEW A, 1992, 45 (08): : 5401 - 5407
  • [46] DISTRIBUTION OF MULTIPLE AVOIDED CROSSINGS - NUMERICAL EVALUATION
    GOLDBERG, J
    SCHWEIZER, W
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1991, 24 (12): : 2785 - 2791
  • [47] An Egorov Theorem for Avoided Crossings of Eigenvalue Surfaces
    Clotilde Fermanian Kammerer
    Caroline Lasser
    Communications in Mathematical Physics, 2017, 353 : 1011 - 1057
  • [48] Diamagnetic informational exchange in hydrogenic avoided crossings
    González-Férez, R
    Dehesa, JS
    CHEMICAL PHYSICS LETTERS, 2003, 373 (5-6) : 615 - 619
  • [49] NONADIABATIC TRANSITIONS THROUGH TILTED AVOIDED CROSSINGS
    Betz, Volker
    Goddard, Benjamin D.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2011, 33 (05): : 2247 - 2276
  • [50] Avoided level crossings in open quantum systems
    Eleuch, Hichem
    Rotter, Ingrid
    FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS, 2013, 61 (2-3): : 194 - 204