Cross Correlation and Inverse Heat Conduction by a Calibration Method

被引:7
|
作者
Frankel, J. I. [1 ]
Keyhani, M. [1 ]
机构
[1] Univ Tennessee, Mech Aerosp & Biomed Dept, Knoxville, TN 37996 USA
基金
美国国家科学基金会;
关键词
PHYSICS-BASED CALIBRATION; FLUX PREDICTION;
D O I
10.2514/1.T5059
中图分类号
O414.1 [热力学];
学科分类号
摘要
A study demonstrates a cross-correlation approach for estimating the best future-time parameter for the calibration integral equation method (CIEM). The non-integer-systemidentification method [8–10] represents an alternative calibration method for resolving inverse heat conduction problems based on a different formulation and numerical implementation. The CIEM represents a calibration approach for resolving inverse heat conduction problems that differs from purely numerical implementations. It is important to realize that alternative formulations. It is important to realize that alternative formulations, numerical methods, and regularization method, exist and implementation preference is based on the individual’s background and the particular problem under consideration. The CIEM is a highly accurate and robust approach for predicting the surface heat flux and surface temperature that does not require the specification of thermophysical, geometrical, and sensor properties.
引用
收藏
页码:746 / 753
页数:8
相关论文
共 50 条
  • [11] Boundary element method for the inverse problem of heat conduction
    Xin, Yumei
    Zang, Shusheng
    Zheng, Hongtao
    Harbin Gongye Daxue Xuebao/Journal of Harbin Institute of Technology, 1997, 29 (03): : 26 - 28
  • [12] Solving an inverse heat conduction problem by a ''method of lines''
    Elden, L
    JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 1997, 119 (03): : 406 - 412
  • [13] Gradient method for inverse heat conduction problem in nanoscale
    Kim, SK
    Daniel, IA
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2004, 60 (13) : 2165 - 2181
  • [14] A numerical method for nonlinear inverse heat conduction problem
    Qian, Ai-lin
    Wang, Guangfu
    PROCEEDINGS OF THE 2013 THE INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND SOFTWARE ENGINEERING (ICAISE 2013), 2013, 37 : 132 - 136
  • [15] A SIMPLE INVERSE HEAT-CONDUCTION METHOD WITH OPTIMIZATION
    VOGEL, J
    SARA, L
    KREJCI, L
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 1993, 36 (17) : 4215 - 4220
  • [16] Numerical method for hyperbolic inverse heat conduction problems
    Chen, HT
    Peng, SY
    Yang, PC
    Fang, LC
    INTERNATIONAL COMMUNICATIONS IN HEAT AND MASS TRANSFER, 2001, 28 (06) : 847 - 856
  • [17] A CONVOLUTION METHOD FOR INVERSE HEAT-CONDUCTION PROBLEMS
    GILLIAM, DS
    MAIR, BA
    MARTIN, CF
    MATHEMATICAL SYSTEMS THEORY, 1988, 21 (01): : 49 - 60
  • [18] A hybrid regularization method for inverse heat conduction problems
    Ling, XW
    Cherukuri, HP
    Horstemeyer, MF
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2006, 65 (13) : 2246 - 2264
  • [19] Global time method for inverse heat conduction problem
    Elkins, Bryan S.
    Keyhani, Majid
    Frankel, J. I.
    INVERSE PROBLEMS IN SCIENCE AND ENGINEERING, 2012, 20 (05) : 651 - 664
  • [20] A perturbation method applied to the inverse heat conduction problem
    BenAbdallah, P
    Sadat, H
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE II FASCICULE B-MECANIQUE PHYSIQUE CHIMIE ASTRONOMIE, 1997, 325 (08): : 473 - 479