Analyzing Abnormal Events from Spatio-Temporal Trajectories

被引:3
|
作者
Patel, Dhaval [1 ]
Bhatt, Chidansh [1 ]
Hsu, Wynne [1 ]
Lee, Mong Li [1 ]
Kankanhalli, Mohan [1 ]
机构
[1] Natl Univ Singapore, Sch Comp, Singapore 117548, Singapore
关键词
representation scheme; trajectory classification; abnormal events;
D O I
10.1109/ICDMW.2009.45
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Advances in RFID based sensor technologies has been used in applications which requires the tracking of assets, products and individuals. The recording of such movements is captured in a trajectory database and can be analyzed for the monitoring of abnormal events. In this paper, we describe a system called InViTA for analyzing abnormal events from spatio-temporal trajectories captured during an office evacuation after an explosion. InViTA utilizes a trajectory representation scheme and extract the features to derive a set of rules that label each person's trajectory as belonging to a suspect, witness, or victim, etc. We run the system on the office evacuation data provided in VAST 2008 challenge and obtain comparable results with that obtained from visualization and human analysis. The system includes a user-friendly graphical interface for parameter tuning and intuitive result analysis.
引用
收藏
页码:616 / 621
页数:6
相关论文
共 50 条
  • [21] ITEA-interactive trajectories and events analysis: exploring sequences of spatio-temporal events in movement data
    Cibulski, Lena
    Gracanin, Denis
    Diehl, Alexandra
    Splechtna, Rainer
    Elshehaly, Mai
    Delrieux, Claudio
    Matkovic, Kresimir
    [J]. VISUAL COMPUTER, 2016, 32 (6-8): : 847 - 857
  • [22] Mining Group Periodic Moving Patterns from Spatio-temporal Trajectories
    Shi, Tantan
    Ji, Genlin
    Liu, Yi
    Zhao, Bin
    [J]. 2019 SEVENTH INTERNATIONAL CONFERENCE ON ADVANCED CLOUD AND BIG DATA (CBD), 2019, : 108 - 113
  • [23] Interactive Activity Learning from Trajectories with Qualitative Spatio-Temporal Relation
    Wang Shengsheng
    Wen Changji
    Lai Yong
    Liu Yiting
    Liu Dayou
    [J]. CHINESE JOURNAL OF ELECTRONICS, 2015, 24 (03) : 508 - 512
  • [24] Interactive Activity Learning from Trajectories with Qualitative Spatio-Temporal Relation
    WANG Shengsheng
    WEN Changji
    LAI Yong
    LIU Yiting
    LIU Dayou
    [J]. Chinese Journal of Electronics, 2015, 24 (03) : 508 - 512
  • [25] Truth Discovery for Spatio-Temporal Events from Crowdsourced Data
    Garcia-Ulloa, Daniel A.
    Xiong, Li
    Sunderam, Vaidy
    [J]. PROCEEDINGS OF THE VLDB ENDOWMENT, 2017, 10 (11): : 1562 - 1573
  • [26] Trajectories similarity measurements based on spatio-temporal patterns
    Etienne, Laurent
    Devogele, Thomas
    [J]. Ingenierie des Systemes d'Information, 2012, 17 (01): : 11 - 34
  • [27] Indexing spatio-temporal trajectories with efficient polynomial approximations
    Ni, Jinfeng
    Ravishankar, Chinya V.
    [J]. IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2007, 19 (05) : 663 - 678
  • [28] Progressive refinement for clustering spatio-temporal semantic trajectories
    Zhao XiuLi
    [J]. 2011 INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND NETWORK TECHNOLOGY (ICCSNT), VOLS 1-4, 2012, : 2695 - 2699
  • [29] Modeling Trajectories: A Spatio-Temporal Data Type Approach
    Frihida, Ali
    Zheni, Donia
    Ben Ghezala, Henda
    Claramunt, Christophe
    [J]. PROCEEDINGS OF THE 20TH INTERNATIONAL WORKSHOP ON DATABASE AND EXPERT SYSTEMS APPLICATION, 2009, : 447 - +
  • [30] An adaptive method for clustering spatio-temporal events
    Li, Zhilin
    Liu, Qiliang
    Tang, Jianbo
    Deng, Min
    [J]. TRANSACTIONS IN GIS, 2018, 22 (01) : 323 - 347