Analyzing Abnormal Events from Spatio-Temporal Trajectories

被引:3
|
作者
Patel, Dhaval [1 ]
Bhatt, Chidansh [1 ]
Hsu, Wynne [1 ]
Lee, Mong Li [1 ]
Kankanhalli, Mohan [1 ]
机构
[1] Natl Univ Singapore, Sch Comp, Singapore 117548, Singapore
关键词
representation scheme; trajectory classification; abnormal events;
D O I
10.1109/ICDMW.2009.45
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Advances in RFID based sensor technologies has been used in applications which requires the tracking of assets, products and individuals. The recording of such movements is captured in a trajectory database and can be analyzed for the monitoring of abnormal events. In this paper, we describe a system called InViTA for analyzing abnormal events from spatio-temporal trajectories captured during an office evacuation after an explosion. InViTA utilizes a trajectory representation scheme and extract the features to derive a set of rules that label each person's trajectory as belonging to a suspect, witness, or victim, etc. We run the system on the office evacuation data provided in VAST 2008 challenge and obtain comparable results with that obtained from visualization and human analysis. The system includes a user-friendly graphical interface for parameter tuning and intuitive result analysis.
引用
收藏
页码:616 / 621
页数:6
相关论文
共 50 条
  • [1] Compressing spatio-temporal trajectories
    Gudmundsson, Joachim
    Katajainen, Jyrki
    Merrick, Damian
    Ong, Cahya
    Wolle, Thomas
    [J]. ALGORITHMS AND COMPUTATION, 2007, 4835 : 763 - +
  • [2] Compressing spatio-temporal trajectories
    Gudmundsson, Joachim
    Katajainen, Jyrki
    Merrick, Damian
    Ong, Cahya
    Wolle, Thomas
    [J]. COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2009, 42 (09): : 825 - 841
  • [3] A spatio-temporal mining approach towards summarizing and analyzing protein folding trajectories
    Hui Yang
    Srinivasan Parthasarathy
    Duygu Ucar
    [J]. Algorithms for Molecular Biology, 2
  • [4] A spatio-temporal mining approach towards summarizing and analyzing protein folding trajectories
    Yang, Hui
    Parthasarathy, Srinivasan
    Ucar, Duygu
    [J]. ALGORITHMS FOR MOLECULAR BIOLOGY, 2007, 2 (1)
  • [5] Abnormal Events Detection Based on Spatio-Temporal Co-occurences
    Benezeth, Y.
    Jodoin, P. -M.
    Saligrama, V.
    Rosenberger, C.
    [J]. CVPR: 2009 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, VOLS 1-4, 2009, : 2450 - +
  • [6] Mining Trajectories for Spatio-temporal Analytics
    Xing, Songhua
    Liu, Xuan
    He, Qing
    Hampapur, Arun
    [J]. 12TH IEEE INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOPS (ICDMW 2012), 2012, : 910 - 913
  • [7] Spatio-Temporal Registration of Multiple Trajectories
    Padoy, Nicolas
    Hager, Gregory D.
    [J]. MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION, MICCAI 2011, PT I, 2011, 6891 : 145 - 152
  • [8] Generating Spatio-Temporal Streaming Trajectories
    Meskovic, E.
    Osmanovic, D.
    Galic, Z.
    Baranovic, M.
    [J]. 2014 37TH INTERNATIONAL CONVENTION ON INFORMATION AND COMMUNICATION TECHNOLOGY, ELECTRONICS AND MICROELECTRONICS (MIPRO), 2014, : 1130 - 1135
  • [9] Linkage of Spatio-Temporal Data and Trajectories
    Karapiperis, Dimitrios
    Gkoulalas-Divanis, Aris
    Verykios, Vassilios S.
    [J]. 2019 5TH IEEE INTERNATIONAL SMART CITIES CONFERENCE (IEEE ISC2 2019), 2019, : 766 - 771
  • [10] ITEA—interactive trajectories and events analysis: exploring sequences of spatio-temporal events in movement data
    Lena Cibulski
    Denis Gračanin
    Alexandra Diehl
    Rainer Splechtna
    Mai Elshehaly
    Claudio Delrieux
    Krešimir Matković
    [J]. The Visual Computer, 2016, 32 : 847 - 857