Performance analysis of intrinsic embedded evolvable hardware using memetic and genetic algorithms

被引:0
|
作者
Chandrasekharan, Ranjith [1 ,2 ]
Rani, S. P. Joy Vasantha [3 ]
机构
[1] KMCT Coll Engn, Fac Elect, Calicut, Kerala, India
[2] KMCT Coll Engn, Dept Commun Engn, Calicut, Kerala, India
[3] Anna Univ, Fac Elect, Dept Engn, MIT Campus, Chennai, Tamil Nadu, India
关键词
evolvable hardware; EHW; embedded evolvable hardware; evolutionary algorithm; genetic algorithm; memetic algorithm; MicroBlaze processor; virtual reconfigurable architecture; VRA; evolution speed; evaluation time; combinational circuits; intrinsic evolution; bio-inspired algorithm; DESIGN;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper discusses the performance analysis of memetic and genetic algorithms (GA and MA) as the optimising strategy for the design of embedded evolvable hardware. The optimisation algorithm with the fitness evaluation searches for the best configuration to evolve the hardware model. Here, an experimental setup is carried to intrinsically evolve combinational circuits to test the performance of MA and GA. The complete evaluation and evolution is built on a single Virtex 6 (XC6VLX240T-1FFG1156) ML605 Evaluation Kit FPGA. A virtual reconfigurable architecture (VRA) with the hardware fitness circuit is modelled as a second reconfigurable layer over the field programmable gate array (FPGA) to configure the target combinational logic. A FPGA soft core processor evaluates the search algorithm and the best solutions are utilised for the hardware evolution. The experimentation results showed that convergence and evolution time of MA was faster compared to GA when the search space was large. Thus, proving MA is a better option for large search space evaluations for evolvable hardware architectures.
引用
收藏
页码:43 / 51
页数:9
相关论文
共 50 条
  • [1] A family of compact genetic algorithms for intrinsic evolvable hardware
    Gallagher, JC
    Vigraham, S
    Kramer, G
    [J]. IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2004, 8 (02) : 111 - 126
  • [2] Intrinsic evolvable hardware platform for digital circuit design and repair using genetic algorithms
    Oreifej, Rashad S.
    DeMara, Ronald F.
    [J]. APPLIED SOFT COMPUTING, 2012, 12 (08) : 2470 - 2480
  • [3] Functional level implementation of evolvable hardware using genetic algorithms
    Karunya, B.
    Uma, R.
    [J]. PROCEEDINGS OF THE INTERNATIONAL CONFERENCE MIXED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 2006, : 671 - +
  • [4] Aspects of genetic algorithms in evolvable hardware implementation
    Negoita, MG
    Dediu, AH
    Mihaila, D
    [J]. PROGRESS IN CONNECTIONIST-BASED INFORMATION SYSTEMS, VOLS 1 AND 2, 1998, : 682 - 685
  • [5] Evolvable hardware using genetic programming
    Nedjah, N
    Mourelle, LD
    [J]. INTELLIGENT DATA ENGINEERING AND AUTOMATED LEARNING, 2003, 2690 : 321 - 328
  • [7] Digital circuit design using intrinsic evolvable hardware
    Zhang, Y
    Smith, SL
    Tyrrell, AM
    [J]. 2004 NASA/DOD CONFERENCE ON EVOLVABLE HARDWARE, PROCEEDINGS, 2004, : 55 - 62
  • [8] Robot navigation system using intrinsic evolvable hardware
    Tan, K.C.
    Lee, T.H.
    Ruk, X.
    Wang, L.F.
    Liu, X.
    [J]. Journal of Harbin Institute of Technology (New Series), 2001, 8 (03) : 261 - 266
  • [9] Bio-inspired Genetic Algorithms on FPGA Evolvable Hardware
    Kasik, Vladimir
    Penhaker, Marek
    Novak, Vilem
    Pustkova, Radka
    Kutalek, Frantisek
    [J]. INTELLIGENT INFORMATION AND DATABASE SYSTEMS (ACIIDS 2012), PT II, 2012, 7197 : 439 - 447
  • [10] Genetic algorithms with optimal structure applied to Evolvable HardWare (EHW)
    Mihaila, D
    [J]. COMPUTATIONAL INTELLIGENCE: THEORY AND APPLICATIONS, 1997, 1226 : 69 - 73