Visible lattice points in random walks

被引:9
|
作者
Cilleruelo, Javier [1 ]
Fernandez, Jose L. [1 ]
Fernandez, Pablo [1 ]
机构
[1] Univ Autonoma Madrid, Dept Matemat, E-28049 Madrid, Spain
关键词
DIFFRACTION;
D O I
10.1016/j.ejc.2018.08.004
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the possible visits to visible points of a random walker moving up and right in the integer lattice (with probability alpha and 1 - alpha, respectively), and starting from the origin. We show that, almost surely, the asymptotic proportion of strings of k consecutive visible lattice points visited by such an alpha-random walk is a certain constant c(k)(alpha), which is actually an (explicitly computable) polynomial in alpha of degree 2 left perpendicular (k - 1)/2 right perpendicular. For k = 1, this gives that, almost surely, the asymptotic proportion of time the random walker is visible from the origin is c(1)(alpha) = 6/pi(2), independently of alpha. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:92 / 112
页数:21
相关论文
共 50 条
  • [41] Lattice Sieving via Quantum Random Walks
    Chailloux, Andre
    Loyer, Johanna
    ADVANCES IN CRYPTOLOGY - ASIACRYPT 2021, PT IV, 2021, 13093 : 63 - 91
  • [42] ON MULTIPLE VISITS IN LATTICE RANDOM-WALKS
    BLERIS, GL
    ARGYRAKIS, P
    ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1988, 72 (01): : 131 - 138
  • [43] Convex lattice polygons with all lattice points visible
    Morrison, Ralph
    Tewari, Ayush Kumar
    DISCRETE MATHEMATICS, 2021, 344 (01)
  • [44] Ergodic properties of visible lattice points
    Baake, Michael
    Huck, Christian
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2015, 288 (01) : 165 - 188
  • [45] SOME REMARKS ON THE VISIBLE POINTS OF A LATTICE
    BAAKE, M
    GRIMM, U
    WARRINGTON, DH
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1994, 27 (08): : 2669 - 2674
  • [46] Ergodic properties of visible lattice points
    Michael Baake
    Christian Huck
    Proceedings of the Steklov Institute of Mathematics, 2015, 288 : 165 - 188
  • [47] PATTERNS OF VISIBLE AND NONVISIBLE LATTICE POINTS
    HERZOG, F
    STEWART, BM
    AMERICAN MATHEMATICAL MONTHLY, 1971, 78 (05): : 487 - +
  • [48] Two-Dimensional Random Interlacements and Late Points for Random Walks
    Francis Comets
    Serguei Popov
    Marina Vachkovskaia
    Communications in Mathematical Physics, 2016, 343 : 129 - 164
  • [49] Two-Dimensional Random Interlacements and Late Points for Random Walks
    Comets, Francis
    Popov, Serguei
    Vachkovskaia, Marina
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2016, 343 (01) : 129 - 164
  • [50] Random walks near Rokhsar-Kivelson points
    Syljuåsen, OF
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2005, 19 (12): : 1973 - 1993