Bivariate Lagrange interpolation at the node points of Lissajous curves - the degenerate case

被引:13
|
作者
Erb, Wolfgang [1 ]
机构
[1] Univ Lubeck, Inst Math, Ratzeburger Allee 160, D-23562 Lubeck, Germany
关键词
Bivariate Lagrange interpolation; Chebyshev lattices; Lissajous curves; Padua points; Quadrature formulas; PADUA POINTS; POLYNOMIAL INTERPOLATION;
D O I
10.1016/j.amc.2016.05.019
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we study bivariate polynomial interpolation on the node points of degenerate Lissajous figures. These node points form Chebyshev lattices of rank 1 and are generalizations of the well-known Padua points. We show that these node points allow unique interpolation in appropriately defined spaces of polynomials and give explicit formulas for the Lagrange basis polynomials. Further, we prove mean and uniform convergence of the interpolating schemes. For the uniform convergence the growth of the Lebesgue constant has to be taken into consideration. It turns out that this growth is of logarithmic nature. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:409 / 425
页数:17
相关论文
共 50 条
  • [21] Algorithm 886: Padua2D-Lagrange Interpolation at Padua Points on Bivariate Domains
    Caliari, Marco
    De Marchi, Stefano
    Vianello, Marco
    ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 2008, 35 (03):
  • [22] Upper Bound for Lebesgue Constant of Bivariate Lagrange Interpolation Polynomial on the Second Kind Chebyshev Points
    Liu, Juan
    Zhu, Laiyi
    JOURNAL OF MATHEMATICS, 2022, 2022
  • [23] Bivariate Hermite interpolation and numerical curves
    Gevorgian, HV
    Hakopian, HA
    Sahakian, AA
    JOURNAL OF APPROXIMATION THEORY, 1996, 85 (03) : 297 - 317
  • [24] BIVARIATE SPLINE INTERPOLATION AT GRID POINTS
    NURNBERGER, G
    RIESSINGER, T
    NUMERISCHE MATHEMATIK, 1995, 71 (01) : 91 - 119
  • [25] Generation of lattices of points for bivariate interpolation
    Carnicer, JM
    Gasca, M
    NUMERICAL ALGORITHMS, 2005, 39 (1-3) : 69 - 79
  • [26] Generation of lattices of points for bivariate interpolation
    J. M. Carnicer
    M. Gasca
    Numerical Algorithms, 2005, 39 : 69 - 79
  • [27] Local Lagrange Interpolation with Bivariate Splines of Arbitrary Smoothness
    Günther Nürnberger
    Vera Rayevskaya
    Larry L. Schumaker
    Frank Zeilfelder
    Constructive Approximation, 2005, 23 : 33 - 59
  • [28] Classification of bivariate configurations with simple Lagrange interpolation formulae
    Carnicer, JM
    Gasca, M
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2004, 20 (1-3) : 5 - 16
  • [29] Classification of Bivariate Configurations with Simple Lagrange Interpolation Formulae
    J.M. Carnicer
    M. Gasca
    Advances in Computational Mathematics, 2004, 20 : 5 - 16
  • [30] Local Lagrange interpolation with bivariate splines of arbitrary smoothness
    Nürnberger, G
    Rayevskaya, V
    Schumaker, LL
    Zeilfelder, F
    CONSTRUCTIVE APPROXIMATION, 2006, 23 (01) : 33 - 59