Bivariate Lagrange interpolation at the node points of Lissajous curves - the degenerate case

被引:13
|
作者
Erb, Wolfgang [1 ]
机构
[1] Univ Lubeck, Inst Math, Ratzeburger Allee 160, D-23562 Lubeck, Germany
关键词
Bivariate Lagrange interpolation; Chebyshev lattices; Lissajous curves; Padua points; Quadrature formulas; PADUA POINTS; POLYNOMIAL INTERPOLATION;
D O I
10.1016/j.amc.2016.05.019
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we study bivariate polynomial interpolation on the node points of degenerate Lissajous figures. These node points form Chebyshev lattices of rank 1 and are generalizations of the well-known Padua points. We show that these node points allow unique interpolation in appropriately defined spaces of polynomials and give explicit formulas for the Lagrange basis polynomials. Further, we prove mean and uniform convergence of the interpolating schemes. For the uniform convergence the growth of the Lebesgue constant has to be taken into consideration. It turns out that this growth is of logarithmic nature. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:409 / 425
页数:17
相关论文
共 50 条
  • [1] Bivariate Lagrange interpolation at the node points of non-degenerate Lissajous curves
    Erb, Wolfgang
    Kaethner, Christian
    Ahlborg, Mandy
    Buzug, Thorsten M.
    NUMERISCHE MATHEMATIK, 2016, 133 (04) : 685 - 705
  • [2] Bivariate Lagrange interpolation at the node points of non-degenerate Lissajous curves
    Wolfgang Erb
    Christian Kaethner
    Mandy Ahlborg
    Thorsten M. Buzug
    Numerische Mathematik, 2016, 133 : 685 - 705
  • [3] A survey on bivariate Lagrange interpolation on Lissajous nodes
    Erb, Wolfgang
    Kaethner, Christian
    Dencker, Peter
    Ahlborg, Mandy
    DOLOMITES RESEARCH NOTES ON APPROXIMATION, 2015, 8 : 23 - 36
  • [4] RATIONAL ASSUMPTION OF INTERPOLATION REFERENCE POINTS IN CASE OF BIVARIATE LAGRANGE INTERPOLATION
    KIS, S
    ACTA TECHNICA ACADEMIAE SCIENTIARUM HUNGARICAE, 1974, 76 (3-4): : 425 - 433
  • [5] Alternation points and bivariate Lagrange interpolation
    Harris, Lawrence A.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2018, 340 : 43 - 52
  • [6] RATIONAL ASSUMPTION OF INTERPOLATION REFERENCE POINTS IN THE CASE OF BIVARIATE LAGRANGE INTERPOLATION.
    Kis, S.
    1600, (76): : 3 - 4
  • [7] A note on bivariate Lagrange interpolation on algebraic curves
    Kroó, A
    STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA, 2001, 38 : 261 - 266
  • [8] Bivariate Lagrange interpolation at the Padua points: Computational aspects
    Caliari, Marco
    De Marchi, Stefano
    Vianello, Marco
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2008, 221 (02) : 284 - 292
  • [9] Bivariate Lagrange interpolation at the Padua points: The generating curve approach
    Bos, Len
    Caliari, Marco
    De Marchi, Stefano
    Vianello, Marco
    Xu, Yuan
    JOURNAL OF APPROXIMATION THEORY, 2006, 143 (01) : 15 - 25
  • [10] BIVARIATE LAGRANGE INTERPOLATION BASED ON CHEBYSHEV POINTS OF THE SECOND KIND
    Liu, J.
    Zhu, L. Y.
    ACTA MATHEMATICA HUNGARICA, 2019, 159 (02) : 618 - 637