Design of Mechanism and Control System for a Lightweight Lower Limb Exoskeleton

被引:4
|
作者
Hu, Bingshan [1 ]
Yu, Hongyang [1 ]
Lu, Hongrun [1 ]
Chang, Yongjie [1 ]
机构
[1] Univ Shanghai Sci & Technol, Inst Rehabil Engn & Technol, Shanghai, Peoples R China
关键词
lower limb exoskeleton; lightweight; mechanism; control;
D O I
10.1109/CRC.2018.00025
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Neurological diseases such as stroke and spinal cord injury can lead to lower limb movement disorders, and gait training is an important means for rehabilitation of lower limb dysfunction. The lower limb exoskeleton robot is a new technique of rehabilitation training for lower limb dysfunction, but lower limb exoskeletons are very heavy and are not easy to wear nowadays. To reduce weight, only the hip joint of the lower limb exoskeleton designed in this paper is driven by motor, and both knee and ankle joint are unpowered joints. Based on the principle of torsion spring clutch, the knee joint can reliably switch the swing phase to the standing phase. This paper also introduces the control system framework of the lower limb exoskeleton and the control method based on finite state machine. Finally, experiments on gait recognition based on foot pressure are carried out.
引用
收藏
页码:83 / 87
页数:5
相关论文
共 50 条
  • [41] Design and Kinematics Analysis of a Lower Limb Exoskeleton Robot
    Wei, Xiaodong
    Yu, Hongliu
    Meng, Qingyun
    Hu, Bingshan
    [J]. MAN-MACHINE-ENVIRONMENT SYSTEM ENGINEERING, MMESE 2018, 2019, 527 : 131 - 139
  • [42] Design and simulation analysis of an improved lower limb exoskeleton
    Li, Na
    Yan, Lei
    Qian, Hua
    Wu, Jian
    Men, Sen
    Li, Yanbei
    [J]. JOURNAL OF VIBROENGINEERING, 2014, 16 (07) : 3655 - 3664
  • [43] Design and Evaluation of a Modular Lower Limb Exoskeleton for Rehabilitation
    dos Santos, Wilian M.
    Nogueira, Samuel L.
    de Oliveira, Gustavo C.
    Pena, Guido G.
    Siqueira, Adriano A. G.
    [J]. 2017 INTERNATIONAL CONFERENCE ON REHABILITATION ROBOTICS (ICORR), 2017, : 447 - 451
  • [44] Structural Design and Analysis of Unpowered Exoskeleton for Lower Limb
    He, Zhenya
    Chen, Siqi
    Zhang, Xianmin
    Huang, Guojian
    Wang, Junming
    [J]. 2021 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND BIOMIMETICS (IEEE-ROBIO 2021), 2021, : 237 - 242
  • [45] Design and analysis of lower limb exoskeleton with external payload
    Arunkumar, S.
    Mahesh, S.
    Rahul, M.
    Ganesh, N.
    Maheshwaran, K. J.
    [J]. INTERNATIONAL JOURNAL OF INTERACTIVE DESIGN AND MANUFACTURING - IJIDEM, 2023, 17 (04): : 2055 - 2072
  • [46] Flexible Design of a Wearable Lower Limb Exoskeleton Robot
    Chen, Chunjie
    Zheng, Duan
    Peng, Ansi
    Wang, Can
    Wu, Xinyu
    [J]. 2013 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND BIOMIMETICS (ROBIO), 2013, : 209 - 214
  • [47] Design and analysis of a lower limb assistive exoskeleton robot
    Li, Xiang
    Wang, Ke-Yi
    Yang, Zi-Yi
    [J]. TECHNOLOGY AND HEALTH CARE, 2024, 32 : S79 - S93
  • [48] Design and Evaluation of a Soft Assistive Lower Limb Exoskeleton
    Di Natali, Christian
    Poliero, Tommaso
    Sposito, Matteo
    Graf, Eveline
    Bauer, Christoph
    Pauli, Carole
    Bottenberg, Eliza
    De Eyto, Adam
    O'Sullivan, Leonard
    Hidalgo, Andres
    Scherly, Daniel
    Stadler, Konrad S.
    Caldwell, Darwin G.
    Ortiz, Jesus
    [J]. ROBOTICA, 2019, 37 (12) : 2014 - 2034
  • [49] Design and Structural Evaluation of a Lower Limb Passive Exoskeleton
    Hasan, Meraj
    Shakeel, Syed S.
    Malik, Fahad M.
    Khalid, Arslan
    Mir, Ahsan K.
    Ahmed, Salman
    [J]. 2015 2ND INTERNATIONAL CONFERENCE ON COMPUTER, COMMUNICATIONS, AND CONTROL TECHNOLOGY (I4CT), 2015,
  • [50] Mechanical Design and Optimization on Lower Limb Exoskeleton for Rehabilitation
    Wang, Jianhua
    Pang, Yuchong
    Chang, Xin
    Chen, Weihai
    Zhang, Jianbin
    [J]. PROCEEDINGS OF THE 2019 14TH IEEE CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS (ICIEA 2019), 2019, : 137 - 142