Si/MgO composite anodes for Li-ion batteries

被引:16
|
作者
Chen Jingbo [1 ]
Zhao Hailei [1 ,2 ]
He Jianchao [1 ]
Wang Jing [1 ]
机构
[1] Univ Sci & Technol Beijing, Sch Mat Sci & Engn, Beijing 100083, Peoples R China
[2] Beijing Key Lab New Energy Mat & Technol, Beijing 100083, Peoples R China
关键词
lithium batteries; anode materials; magnesia; silicon; electrochemical properties; LITHIUM SECONDARY BATTERIES; ALLOY NEGATIVE ELECTRODES; SILICON; PERFORMANCE; CAPACITY; NANOWIRES; STORAGE;
D O I
10.1007/s12598-011-0218-4
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A Si/MgO composite anode material was prepared by a simple magnesium reduction process using silicon oxide and magnesium as starting reactants. The feasibility of this process is discussed from the thermodynamic viewpoint. The resultant composite material is mainly composed of Si and MgO components. MgO, acting as a buffer layer, can accommodate the large volume change of active Si during the charge/discharge process, thus the cycling stability is improved. Electrochemical tests demonstrate that the first charge and discharge capacities of the synthesized Si/MgO composite anode are ca. 1380 and 1046 mAh.g(-1), respectively, with an initial coulomb efficiency of ca. 76%. The magnesium reduction process provides a novel idea for the synthesis of Si-based anode materials.
引用
收藏
页码:166 / 169
页数:4
相关论文
共 50 条
  • [21] Nanostructured Si/TiC composite anode for Li-ion batteries
    Zeng, Z. Y.
    Tu, J. P.
    Yang, Y. Z.
    Xiang, J. Y.
    Huang, X. H.
    Mao, F.
    Ma, M.
    [J]. ELECTROCHIMICA ACTA, 2008, 53 (06) : 2724 - 2728
  • [22] Nanocomposite anodes for use in Li-ion batteries
    Yushin, Gleb
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2013, 245
  • [23] The dimensionality of Sn anodes in Li-ion batteries
    Wang, Bin
    Luo, Bin
    Li, Xianglong
    Zhi, Linjie
    [J]. MATERIALS TODAY, 2012, 15 (12) : 544 - 552
  • [24] Conjugated dicarboxylate anodes for Li-ion batteries
    Armand M.
    Grugeon S.
    Vezin H.
    Laruelle S.
    Ribière P.
    Poizot P.
    Tarascon J.-M.
    [J]. Nature Materials, 2009, 8 (2) : 120 - 125
  • [25] Conjugated dicarboxylate anodes for Li-ion batteries
    Armand, M.
    Grugeon, S.
    Vezin, H.
    Laruelle, S.
    Ribiere, P.
    Poizot, P.
    Tarascon, J. -M.
    [J]. NATURE MATERIALS, 2009, 8 (02) : 120 - 125
  • [26] Metal oxide anodes for Li-ion batteries
    T. Brousse
    D. Defives
    L. Pasquereau
    S. M. Lee
    U. Herterich
    D. M. Schleich
    [J]. Ionics, 1997, 3 : 332 - 337
  • [27] Metal Oxide Anodes for Li-ion Batteries
    Brousse, T.
    Defives, D.
    Pasquereau, L.
    Lee, S. M.
    Herterich, U.
    Schleich, D. M.
    [J]. IONICS, 1997, 3 (5-6) : 332 - 337
  • [28] Effect of the Electrolyte Composition on SEI Reactions at Si Anodes of Li-Ion Batteries
    de la Hoz, Julibeth M. Martinez
    Soto, Fernando A.
    Balbuena, Perla B.
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2015, 119 (13): : 7060 - 7068
  • [29] Improving Interface Stability of Si Anodes by Mg Coating in Li-Ion Batteries
    Li, Zhifei
    Stetson, Caleb
    Teeter, Glenn
    Norman, Andrew
    Ha, Yeyoung
    de Villers, Bertrand J. Tremolet
    Huey, Zoey
    Walker, Patrick
    Han, Sang-Don
    DeCaluwe, Steven C.
    Jiang, Chun-Sheng
    Burrell, Anthony K.
    Zakutayev, Andriy
    [J]. ACS APPLIED ENERGY MATERIALS, 2020, 3 (12): : 11534 - 11539
  • [30] Nanostructured Zn-based composite anodes for rechargeable Li-ion batteries
    Hwa, Yoon
    Sung, Ji Hyun
    Wang, Bin
    Park, Cheol-Min
    Sohn, Hun-Joon
    [J]. JOURNAL OF MATERIALS CHEMISTRY, 2012, 22 (25) : 12767 - 12773