A note on the knot Floer homology of fibered knots

被引:12
|
作者
Baldwin, John A. [1 ]
Vela-Vick, David Shea
机构
[1] Boston Coll, Dept Math, Chestnut Hill, MA 02167 USA
来源
ALGEBRAIC AND GEOMETRIC TOPOLOGY | 2018年 / 18卷 / 06期
基金
美国国家科学基金会;
关键词
GENUS-ONE; DETECTS;
D O I
10.2140/agt.2018.18.3669
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that the knot Floer homology of a fibered knot is nontrivial in its next-to-top Alexander grading. Immediate applications include new proofs of Krcatovich's result that knots with L-space surgeries are prime and Hedden and Watson's result that the rank of knot Floer homology detects the trefoil among knots in the 3-sphere. We also generalize the latter result, proving a similar theorem for nullhomologous knots in any 3-manifold. We note that our method of proof inspired Baldwin and Sivek's recent proof that Khovanov homology detects the trefoil. As part of this work, we also introduce a numerical refinement of the Ozsvath-Szabo contact invariant. This refinement was the inspiration for Hubbard and Saltz's annular refinement of Plamenevskaya's transverse link invariant in Khovanov homology.
引用
收藏
页码:3669 / 3690
页数:22
相关论文
共 50 条
  • [41] On Knot Floer Homology and Cabling: 2
    Hedden, Matthew
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2009, 2009 (12) : 2248 - 2274
  • [42] Knot Floer homology and Seifert surfaces
    Juhasz, Andras
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2008, 8 (01): : 603 - 608
  • [43] Knot Floer homology and rational surgeries
    Ozsvath, Peter S.
    Szabo, Zoltan
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2011, 11 (01): : 1 - 68
  • [44] A note on the concordance of fibered knots
    Baker, Kenneth L.
    JOURNAL OF TOPOLOGY, 2016, 9 (01) : 1 - 4
  • [45] Knot Floer homology of Whitehead doubles
    Hedden, Matthew
    GEOMETRY & TOPOLOGY, 2007, 11 : 2277 - 2338
  • [46] Knot Floer homology and the unknotting number
    Alishahi, Akram
    Eftekhary, Eaman
    GEOMETRY & TOPOLOGY, 2020, 24 (05) : 2435 - 2469
  • [47] Floer homology and splicing knot complements
    Eftekhary, Eaman
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2015, 15 (06): : 3155 - 3213
  • [48] Concordance maps in knot Floer homology
    Juhasz, Andras
    Marengon, Marco
    GEOMETRY & TOPOLOGY, 2016, 20 (06) : 3623 - 3673
  • [49] A cube of resolutions for knot Floer homology
    Ozsvath, Peter
    Szabo, Zoltan
    JOURNAL OF TOPOLOGY, 2009, 2 (04) : 865 - 910
  • [50] Knot Floer homology and integer surgeries
    Ozsvath, Peter S.
    Szabo, Zoltan
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2008, 8 (01): : 101 - 153