Uniaxially oriented carbon monoliths as supercapacitor electrodes

被引:56
|
作者
Garcia-Gomez, A. [1 ]
Miles, P. [1 ]
Centeno, T. A. [2 ]
Rojo, J. M. [1 ]
机构
[1] CSIC, Inst Ciencia Mat Madrid, Madrid 28049, Spain
[2] CSIC, Inst Nacl Carbon, Oviedo 33011, Spain
关键词
Carbon; Monoliths; Electrodes; Supercapacitors; EDLC; PORE-SIZE DISTRIBUTION; ACTIVATED CARBONS; AEROGEL ELECTRODES; MESOPOROUS CARBON; CONDUCTIVITY; ADSORPTION;
D O I
10.1016/j.electacta.2010.07.072
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Cylindrical carbon monoliths of 7 mm in diameter and certain heights (1 2 3 4 and 5 mm) are studied as model electrodes for supercapacitors The monoliths show a narrow microporous structure with average micropore size of 0 73 nm and specific surface area of 1086 m(2) g(-1) The monoliths show straight walls and channels both arranged along the cylinder axis The former account for a remarkable electrical conductivity (6 5 S cm(-1) at room temperature) The latter allow a rapid ionic transport between the electrolyte bulk and the carbon walls and account for a high specific capacitance at high current density The cell capacitance and resistance increase lineally with the monolith height according to C = (1 78 +/- 0 06)h and ESR = (0 08 +/- 0 01)h + (1 67 +/- 0 04) respectively The contribution of the electrolyte resistance monolith resistance and monolith/collector resistance to ESR is discussed The cell response time or constant tune increases with the monolith height but according to a power dependence tau = (4 5 +/- 0 2)h((1 01 +/- 0 03)) The carbon of the monoliths show in KOH electrolyte a specific capacitance of 150 Fg(-1) and a capacitance per sui face area of 14 mu F cm(-2) (C) 2010 Elsevier Ltd All rights reserved
引用
收藏
页码:8539 / 8544
页数:6
相关论文
共 50 条
  • [41] Hierarchical manganese oxide/carbon nanocomposites for supercapacitor electrodes
    Yiting Peng
    Zheng Chen
    Jing Wen
    Qiangfeng Xiao
    Ding Weng
    Shiyu He
    Hongbin Geng
    Yunfeng Lu
    [J]. Nano Research, 2011, 4 : 216 - 225
  • [42] Multi-dimensional carbon nanofibers for supercapacitor electrodes
    Hyun, Byung Gwan
    Son, Hye Jeong
    Ji, Sangyoon
    Jang, Jiuk
    Hur, Seung-Hyun
    Park, Jang-Ung
    [J]. JOURNAL OF ELECTROCERAMICS, 2017, 38 (01) : 43 - 50
  • [43] Carbon/λ-MnO2 composites for supercapacitor electrodes
    Malak-Polaczyk, A.
    Matei-Ghimbeu, C.
    Vix-Guterl, C.
    Frackowiak, E.
    [J]. JOURNAL OF SOLID STATE CHEMISTRY, 2010, 183 (04) : 969 - 974
  • [44] Fabrication and Electrochemical Characterization of Carbon Based Supercapacitor Electrodes
    Khawaja, Mohamad K.
    Khanfar, Mohammad F.
    Oghlenian, Talin
    Alnahar, Waed
    [J]. 2019 10TH INTERNATIONAL RENEWABLE ENERGY CONGRESS (IREC), 2019,
  • [45] Hierarchical Manganese Oxide/Carbon Nanocomposites for Supercapacitor Electrodes
    Peng, Yiting
    Chen, Zheng
    Wen, Jing
    Xiao, Qiangfeng
    Weng, Ding
    He, Shiyu
    Geng, Hongbin
    Lu, Yunfeng
    [J]. NANO RESEARCH, 2011, 4 (02) : 216 - 225
  • [46] Revitalizing carbon supercapacitor electrodes with hierarchical porous structures
    Liu, Tianyu
    Zhang, Feng
    Song, Yu
    Li, Yat
    [J]. JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (34) : 17705 - 17733
  • [47] Infested ash trees as a carbon source for supercapacitor electrodes
    Lia Kouchachvili
    Nicola Maffei
    Evgueniy Entchev
    [J]. Journal of Porous Materials, 2015, 22 : 979 - 988
  • [48] Activated carbon supercapacitor electrodes prepared by a casting method
    Zeng, YQ
    Li, BH
    Zhou, PW
    Kang, FY
    Chen, LQ
    [J]. NEW CARBON MATERIALS, 2005, 20 (04) : 299 - 304
  • [49] A Nanoporous Carbon/Exfoliated Graphite Composite For Supercapacitor Electrodes
    Rosi, Memoria
    Ekaputra, Muhamad P.
    Iskandar, Ferry
    Abdullah, Mikrajuddin
    Khairurrijal
    [J]. 4TH ASIAN PHYSICS SYMPOSIUM: AN INTERNATIONAL EVENT, 2010, 1325 : 86 - 89
  • [50] Preparation of carbon aerogel electrodes for supercapacitor and their electrochemical characteristics
    Kim, SJ
    Hwang, SW
    Hyun, SH
    [J]. JOURNAL OF MATERIALS SCIENCE, 2005, 40 (03) : 725 - 731