An Attention Based Multi-view Model for Sarcasm Cause Detection

被引:0
|
作者
Liu, Hejing [1 ,2 ]
Li, Qiudan [2 ,3 ]
Tang, Zaichuan [1 ,2 ]
Bai, Jie [2 ,3 ]
机构
[1] Univ Chinese Acad Sci, Sch Artificial Intelligence, Beijing 100049, Peoples R China
[2] Chinese Acad Sci, Inst Automat, Beijing 100190, Peoples R China
[3] Shenzhen Artificial Intelligence & Data Sci Inst, Longhua, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Sarcasm often relates to people's implicit discontent with certain products and policies. Existing research mainly focus on sarcasm detection, while the deep causal relationships in the full conversation remained unexplored. This paper formulates a novel research question of sarcasm cause detection, and proposes an attention based model that simultaneously captures different semantic associations as well as the inner causal logics in multi-view manner Experiments on public Reddit dataset prove the efficacy of the proposed model.
引用
收藏
页码:15833 / 15834
页数:2
相关论文
共 50 条
  • [31] Sarcasm detection based on BERT and attention mechanism
    Jiana Meng
    Yanlin Zhu
    Shichang Sun
    Dandan Zhao
    [J]. Multimedia Tools and Applications, 2024, 83 : 29159 - 29178
  • [32] Collaborative recommendation model based on multi-modal multi-view attention network: Movie and literature cases
    Hu, Zheng
    Cai, Shi-Min
    Wang, Jun
    Zhou, Tao
    [J]. APPLIED SOFT COMPUTING, 2023, 144
  • [33] Multi-view stereo network with point attention
    Zhao, Rong
    Gu, Zhuoer
    Han, Xie
    He, Ligang
    Sun, Fusheng
    Jiao, Shichao
    [J]. APPLIED INTELLIGENCE, 2023, 53 (22) : 26622 - 26636
  • [34] Multi-view stereo network with point attention
    Rong Zhao
    Zhuoer Gu
    Xie Han
    Ligang He
    Fusheng Sun
    Shichao Jiao
    [J]. Applied Intelligence, 2023, 53 : 26622 - 26636
  • [35] Multi-view self-attention networks
    Xu, Mingzhou
    Yang, Baosong
    Wong, Derek F.
    Chao, Lidia S.
    [J]. KNOWLEDGE-BASED SYSTEMS, 2022, 241
  • [36] A Multi-View Intrusion Detection Model for Reliable and Autonomous Model Updates
    Tomio, Rivaldo L.
    Viegas, Eduardo K.
    Santin, Altair O.
    dos Santos, Roger R.
    [J]. IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC 2021), 2021,
  • [37] MVAN: Multi-View Attention Networks for Fake News Detection on Social Media
    Ni, Shiwen
    Li, Jiawen
    Kao, Hung-Yu
    [J]. IEEE ACCESS, 2021, 9 : 106907 - 106917
  • [38] Multi-View Attention Network for Visual Dialog
    Park, Sungjin
    Whang, Taesun
    Yoon, Yeochan
    Lim, Heuiseok
    [J]. APPLIED SCIENCES-BASEL, 2021, 11 (07):
  • [39] Attention-Aware Multi-View Stereo
    Luo, Keyang
    Guan, Tao
    Ju, Lili
    Wang, Yuesong
    Chen, Zhuo
    Luo, Yawei
    [J]. 2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2020, : 1587 - 1596
  • [40] MGAT: Multi-view Graph Attention Networks
    Xie, Yu
    Zhang, Yuanqiao
    Gong, Maoguo
    Tang, Zedong
    Han, Chao
    [J]. NEURAL NETWORKS, 2020, 132 : 180 - 189