Localization and Segmentation of the Optic Nerve Head in Eye Fundus Images Using Pyramid Representation and Genetic Algorithms

被引:0
|
作者
Molina, Jose M. [1 ]
Carmona, Enrique J. [1 ]
机构
[1] Univ Nacl Educ Distancia, Dpto Inteligencia Artificial, ETSI Informat, Juan del Rosal 16, E-28040 Madrid, Spain
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper proposes an automatic method to locate and segment the optic nerve head (papilla) from eye fundus color photographic images. The method is inspired in the approach presented in [1]. Here, we use a Gaussian pyramid representation of the input image to obtain a subwindow centered at a point of the papillary area. Then, we apply a Laplacian pyramid to this image subwindow and we obtain a set of interest points (IPs) in two pyramid levels. Finally, a two-phase genetic algorithm is used in each pyramid level to find an ellipse containing the maximum number of IPs in an offset of its perimeter and, in this way, to achieve a progressive solution to the ONH contour. The method is tested in an eye fundus image database and, in relation to the method described in [1], the proposed method provides a slightly lower performance but it simplifies the methodology used to obtain the set of IPs and also reduces the computational cost of the whole process.
引用
收藏
页码:431 / 440
页数:10
相关论文
共 50 条
  • [31] Optic Disc Segmentation in Fundus Images using Operator Splitting Approach
    Mohan, N. Jagan
    Murugan, R.
    Goel, Tripti
    Roy, Parthapratim
    [J]. 2020 ADVANCED COMMUNICATION TECHNOLOGIES AND SIGNAL PROCESSING (IEEE ACTS), 2020,
  • [32] Optimal segmentation of the optic nerve head from stereo retinal images
    Merickel, Michael B., Jr.
    Wu, Xiaodong
    Sonka, Milan
    Abramoff, Michael
    [J]. MEDICAL IMAGING 2006: PHYSIOLOGY, FUNCTION, AND STRUCTURE FROM MEDICAL IMAGES PTS 1 AND 2, 2006, 6143
  • [33] Segmentation of Optic Disc and Optic Cup in Retinal Fundus Images using Shape Regression
    Sedai, Suman
    Roy, Pallab K.
    Mahapatra, Dwarikanath
    Garnavi, Rahil
    [J]. 2016 38TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2016, : 3260 - 3264
  • [34] Exploiting data characteristics to improve automated optic nerve head segmentation and localization in OCT en face images
    Schlegl, Thomas
    Stino, Heiko
    Niederleithner, Michael
    Huber, Kim Lien
    Salehi, Ali
    Schmidt-Erfurth, Ursula
    Pollreisz, Andreas
    Drexler, Wolfgang
    Leitgeb, Rainer A.
    Schmoll, Tilman
    [J]. INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2023, 64 (08)
  • [35] Effect of Two Different Preprocessing Steps in Detection of Optic Nerve Head in Fundus Images
    Tavakoli, Meysam
    Nazar, Mahdieh
    Mehdizadeh, Alireza
    [J]. MEDICAL IMAGING 2017: COMPUTER-AIDED DIAGNOSIS, 2017, 10134
  • [36] Optic nerve head assessment in Light-field fundus images - A case study
    Dietzel, Alexander
    Schramm, Stefan
    Blum, Maren-Christina
    Link, Dietmar
    Klee, Sascha
    [J]. ACTA OPHTHALMOLOGICA, 2022, 100
  • [37] Recognition of Glaucomatous Fundus Images Using Machine Learning Methods Based on Optic Nerve Head Topographic Features
    Wu, Chao-Wei
    Huang, Tzu-Yu
    Liou, Yeong-Cheng
    Chen, Shih-Hsin
    Wu, Kwou-Yeung
    Tseng, Han-Yi
    [J]. JOURNAL OF GLAUCOMA, 2024, 33 (08) : 601 - 606
  • [38] Automatic Localization and Segmentation of Optic Disc in Retinal Fundus Images through Image Processing Techniques
    GeethaRamani, R.
    Dhanapackiam, C.
    [J]. 2014 INTERNATIONAL CONFERENCE ON RECENT TRENDS IN INFORMATION TECHNOLOGY (ICRTIT), 2014,
  • [39] Optic cup segmentation of stereo retinal fundus images using virtual reality
    Rafael Arnay
    Javier Hernández-Aceituno
    Tinguaro Díaz-Alemán
    Jose Sigut
    Silvia Alayón
    Francisco Fumero
    [J]. Multimedia Tools and Applications, 2024, 83 : 9669 - 9683
  • [40] AUTOMATIC OPTIC DISK AND CUP SEGMENTATION OF FUNDUS IMAGES USING DEEP LEARNING
    Edupuganti, Venkata Gopal
    Chawla, Akshay
    Kale, Amit
    [J]. 2018 25TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2018, : 2227 - 2231