Classification of volatile organic compounds with incremental SVMs and RBF networks

被引:0
|
作者
Erdem, Z [1 ]
Polikar, R
Yumusak, N
Gürgen, F
机构
[1] TUBITAK Marmara Res Ctr, Inst Informat Technol, TR-41470 Gebze, Kocaeli, Turkey
[2] Rowan Univ, Dept Elect & Comp Engn, Glassboro, NJ 08028 USA
[3] Sakarya Univ, Dept Comp Engn, TR-54187 Sakarya, Turkey
[4] Bogazici Univ, Dept Comp Engn, TR-80815 Bebek, Turkey
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Support Vector Machines (SVMs) have been applied to solve the classification of volatile organic compounds (VOC) data in some recent studies. SVMs provide good generalization performance in detection and classification of VOC data. However, in many applications involving VOC data, it is not unusual for additional data, which may include new classes, to become available over time, which then requires an SVM classifier that is capable of incremental learning that does not suffer from loss of previously acquired knowledge. In our previous work, we have proposed the incremental SVM approach based on Learn(++).MT. In this contribution, the ability of SVMLearn(++).MT to incrementally classify VOC data is evaluated and compared against a similarly constructed Learn(++).MT algorithm that uses radial basis function neural network as base classifiers.
引用
收藏
页码:322 / 331
页数:10
相关论文
共 50 条
  • [31] Biofiltration of volatile organic compounds
    Luc Malhautier
    Nadia Khammar
    Sandrine Bayle
    Jean-Louis Fanlo
    Applied Microbiology and Biotechnology, 2005, 68 : 16 - 22
  • [32] A Database for Volatile Organic Compounds
    K. Mannschreck
    K. Bächmann
    K. H. Becker
    Th. Heil
    R. Kurtenbach
    M. Memmesheimer
    V. Mohnen
    A. Obermeier
    D. Poppe
    R. Steinbrecher
    Th. Schmitz
    A. Volz-Thomas
    F. Zabel
    Journal of Atmospheric Chemistry, 2002, 42 : 281 - 286
  • [33] Elimination of volatile organic compounds
    Rene, Eldon R.
    Jagannathan, K.
    Swaminathan, T.
    Chemical Engineering World, 2004, 39 (08): : 42 - 50
  • [34] Testing for volatile organic compounds
    Hogan, Hank
    Fuels and Lubes International, 2016, 22 (04): : 8 - 10
  • [35] Volatile Organic Compounds in Uremia
    Pagonas, Nikolaos
    Vautz, Wolfgang
    Seifert, Luzia
    Slodzinski, Rafael
    Jankowski, Joachim
    Zidek, Walter
    Westhoff, Timm H.
    PLOS ONE, 2012, 7 (09):
  • [36] Detection of volatile organic compounds
    不详
    ZKG INTERNATIONAL, 2008, 61 (07): : 13 - 13
  • [37] A database for volatile organic compounds
    Mannschreck, K
    Bächmann, K
    Barnes, I
    Becker, KH
    Heil, T
    Kurtenbach, R
    Memmesheimer, M
    Mohnen, V
    Obermeier, A
    Poppe, D
    Steinbrecher, R
    Schmitz, T
    Volz-Thomas, A
    Zabel, F
    JOURNAL OF ATMOSPHERIC CHEMISTRY, 2002, 42 (01) : 281 - 286
  • [38] Atherogenicity of Volatile Organic Compounds
    Malovichko, Marina V.
    Riggs, Daniel W.
    Agrawal, Abhinav
    O'Toole, Timothy E.
    Keith, Rachel J.
    DeFilippis, Andrew
    Rai, Shesh N.
    Valle, Karen
    Yimer, Wondwosen K.
    Bhatnagar, Aruni
    Conklin, Daniel J.
    Hall, Michael E.
    Srivastava, Sanjay
    ARTERIOSCLEROSIS THROMBOSIS AND VASCULAR BIOLOGY, 2019, 39
  • [39] A Differential Evolution based incremental training method for RBF networks
    Liu, Junhong
    Lampinen, Jouni
    GECCO 2005: GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, VOLS 1 AND 2, 2005, : 881 - 888
  • [40] Nonvolatile, semivolatile, or volatile: Redefining volatile for volatile organic compounds
    Vo, Uyen-Uyen T.
    Morris, Michael P.
    JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION, 2014, 64 (06) : 661 - 669