Parameter identification of commensurate fractional-order chaotic system via differential evolution

被引:63
|
作者
Tang, Yinggan [1 ]
Zhang, Xiangyang [1 ]
Hua, Changchun [1 ]
Li, Lixiang [2 ]
Yang, Yixian [2 ]
机构
[1] Yanshan Univ, Inst Elect Engn, Qinhuangdao 066004, Hebei, Peoples R China
[2] Chinese Acad Sci, Res Ctr Fictitious Econ & Data Sci, Beijing 100190, Peoples R China
基金
中国国家自然科学基金; 美国国家科学基金会;
关键词
Parameter identification; Fractional order; Chaotic system; Differential evolution; SYNCHRONIZATION; EQUATIONS; ROSSLER; MODEL;
D O I
10.1016/j.physleta.2011.12.008
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Chaos can be observed in fractional-order nonlinear systems with appropriate orders. The knowledge about the parameters and orders are the basis of the control and synchronization of fractional-order chaotic systems. In this Letter, the problem of parameter identification of commensurate fractional-order chaotic systems is investigated. By treating the orders as additional parameters, the parameters and orders are identified together through minimizing an objective function. Differential evolution algorithm, a powerful and robust evolutionary algorithm, is applied to search the optimal solution of the objective function. Numerical simulations and comparisons with genetic algorithm (GA) demonstrate the effectiveness of the proposed method. Crown Copyright (C) 2011 Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:457 / 464
页数:8
相关论文
共 50 条
  • [21] Designing synchronization schemes for fractional-order chaotic system via a single state fractional-order controller
    Li, Tianzeng
    Wang, Yu
    Yang, Yong
    [J]. OPTIK, 2014, 125 (22): : 6700 - 6705
  • [22] Synchronization of the fractional-order chaotic system via adaptive observer
    Zhang, Ruoxun
    Gong, Jingbo
    [J]. SYSTEMS SCIENCE & CONTROL ENGINEERING, 2014, 2 (01): : 751 - 754
  • [23] Identification of fractional-order systems via a switching differential evolution subject to noise perturbations
    Zhu, Wu
    Fang, Jian-an
    Tang, Yang
    Zhang, Wenbing
    Xu, Yulong
    [J]. PHYSICS LETTERS A, 2012, 376 (45) : 3113 - 3120
  • [24] Identification of Unknown Parameters and Orders via Cuckoo Search Oriented Statistically by Differential Evolution for Noncommensurate Fractional-Order Chaotic Systems
    Gao, Fei
    Lee, Xue-Jing
    Tong, Heng-qing
    Fei, Feng-xia
    Zhao, Hua-ling
    [J]. ABSTRACT AND APPLIED ANALYSIS, 2013,
  • [25] Synchronization of Chaotic Fractional-order Systems via Fractional-Order Adaptive Controller
    Fayazi, Ali
    [J]. EMERGING SYSTEMS FOR MATERIALS, MECHANICS AND MANUFACTURING, 2012, 109 : 333 - 339
  • [26] Chaotic Synchronization and Parameter Identification of Fractional-order Dynamical Equation with Attitude of Spacecraft
    Du Xiaowei
    Wu Aiguo
    Dong Jun
    Yu Kejie
    [J]. PROCEEDINGS OF THE 28TH CHINESE CONTROL AND DECISION CONFERENCE (2016 CCDC), 2016, : 1456 - 1461
  • [27] Parameter identification of fractional-order chaotic systems without or with noise: Reply to comments
    Yuan, Liguo
    Yang, Qigui
    [J]. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2019, 67 : 506 - 516
  • [28] Stability Analysis for a Class of Fractional-Order System with Commensurate Order
    Wang, Dongfeng
    Wang, Xiaoyan
    Han, Pu
    [J]. 2010 8TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION (WCICA), 2010, : 3472 - 3478
  • [29] The Synchronization of a fractional-order chaotic system
    Zhang Fan-di
    [J]. ENGINEERING SOLUTIONS FOR MANUFACTURING PROCESSES, PTS 1-3, 2013, 655-657 : 1488 - 1491
  • [30] FPGA implementation of fractional-order discrete memristor chaotic system and its commensurate and incommensurate synchronisations
    Anitha Karthikeyan
    Karthikeyan Rajagopal
    [J]. Pramana, 2018, 90