Parameter identification of commensurate fractional-order chaotic system via differential evolution

被引:63
|
作者
Tang, Yinggan [1 ]
Zhang, Xiangyang [1 ]
Hua, Changchun [1 ]
Li, Lixiang [2 ]
Yang, Yixian [2 ]
机构
[1] Yanshan Univ, Inst Elect Engn, Qinhuangdao 066004, Hebei, Peoples R China
[2] Chinese Acad Sci, Res Ctr Fictitious Econ & Data Sci, Beijing 100190, Peoples R China
基金
中国国家自然科学基金; 美国国家科学基金会;
关键词
Parameter identification; Fractional order; Chaotic system; Differential evolution; SYNCHRONIZATION; EQUATIONS; ROSSLER; MODEL;
D O I
10.1016/j.physleta.2011.12.008
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Chaos can be observed in fractional-order nonlinear systems with appropriate orders. The knowledge about the parameters and orders are the basis of the control and synchronization of fractional-order chaotic systems. In this Letter, the problem of parameter identification of commensurate fractional-order chaotic systems is investigated. By treating the orders as additional parameters, the parameters and orders are identified together through minimizing an objective function. Differential evolution algorithm, a powerful and robust evolutionary algorithm, is applied to search the optimal solution of the objective function. Numerical simulations and comparisons with genetic algorithm (GA) demonstrate the effectiveness of the proposed method. Crown Copyright (C) 2011 Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:457 / 464
页数:8
相关论文
共 50 条
  • [1] Projective synchronization and parameter identification of a fractional-order chaotic system
    Kong De-fu
    Zhao Xiao-shan
    [J]. PROCEEDINGS OF THE 3RD INTERNATIONAL CONFERENCE ON MECHANICAL ENGINEERING AND INTELLIGENT SYSTEMS (ICMEIS 2015), 2015, 26 : 880 - 883
  • [2] Sequential Parameter Identification of Fractional-Order Duffing System Based on Differential Evolution Algorithm
    Lai, Li
    Ji, Yuan-Dong
    Zhong, Su-Chuan
    Zhang, Lu
    [J]. MATHEMATICAL PROBLEMS IN ENGINEERING, 2017, 2017
  • [3] Parameter Identification of Fractional-Order Discrete Chaotic Systems
    Peng, Yuexi
    Sun, Kehui
    He, Shaobo
    Peng, Dong
    [J]. ENTROPY, 2019, 21 (01):
  • [4] Parameter identification and synchronization of fractional-order chaotic systems
    Yuan, Li-Guo
    Yang, Qi-Gui
    [J]. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2012, 17 (01) : 305 - 316
  • [5] Identification of fractional-order system based on modified differential evolution
    Huang, Lilian
    Zhou, Xiaoliang
    [J]. 2013 25TH CHINESE CONTROL AND DECISION CONFERENCE (CCDC), 2013, : 1856 - 1861
  • [6] Parameter identification and optimisation for a class of fractional-order chaotic system with time delay
    Li, Xiao
    Liu, Fu-cai
    Liu, Xue
    Guo, Yu
    [J]. INTERNATIONAL JOURNAL OF MODELLING IDENTIFICATION AND CONTROL, 2018, 29 (02) : 153 - 162
  • [7] Parameter Identification of Fractional-order Chaotic System Based on Chemical Reaction Optimization
    Zhang, Junhao
    Gao, Fei
    Chen, Yang
    Zou, Yukun
    [J]. PROCEEDINGS OF THE 2018 2ND INTERNATIONAL CONFERENCE ON MANAGEMENT ENGINEERING, SOFTWARE ENGINEERING AND SERVICE SCIENCES (ICMSS 2018), 2018, : 217 - 222
  • [8] Chaotic Synchronization and Parameter Identification of Fractional-order Unified Systems
    Wang Shaoying
    Li Qiongyao
    Dong Jun
    Wu Aiguo
    [J]. PROCEEDINGS OF THE 28TH CHINESE CONTROL AND DECISION CONFERENCE (2016 CCDC), 2016, : 2454 - 2459
  • [9] Fractional-order cuckoo search algorithm for parameter identification of the fractional-order chaotic, chaotic with noise and hyper-chaotic financial systems
    Yousri, Dalia
    Mirjalili, Seyedali
    [J]. ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2020, 92 (92)
  • [10] Control fractional-order continuous chaotic system via a simple fractional-order controller
    Zhang, Dong
    Yang, Shou-liang
    [J]. INDUSTRIAL INSTRUMENTATION AND CONTROL SYSTEMS II, PTS 1-3, 2013, 336-338 : 770 - 773