Unsupervised signal restoration using copulas and pairwise Markov chains

被引:0
|
作者
Brunel, N [1 ]
Pieczynski, W [1 ]
机构
[1] CNRS UMR 5157, GET INT Dept CITI, F-91000 Evry, France
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This work is about the statistical restoration of hidden discrete signals. The problem we deal with is how to take into account, in recent pairwise and triplet Markov chain context, complex noises that can be non-Gaussian, correlated, and of class-varying nature. We propose to solve this modeling problem using Copulas. The interest of the new modeling is validated by experiments performed in supervised and unsupervised context. In the latter, all parameters are estimated from the only observed data by an original method.
引用
收藏
页码:102 / 105
页数:4
相关论文
共 50 条
  • [41] Deep parameterizations of pairwise and triplet Markov models for unsupervised classification of sequential data
    Gangloff, Hugo
    Morales, Katherine
    Samovar, Yohan Petetin
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2023, 180
  • [42] PARAMETER ESTIMATION IN CONDITIONALLY GAUSSIAN PAIRWISE MARKOV SWITCHING MODELS AND UNSUPERVISED SMOOTHING
    Zheng, Fei
    Derrode, Stephane
    Pieczynski, Wojciech
    [J]. 2016 IEEE 26TH INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING (MLSP), 2016,
  • [43] CIRCULANT MARKOV CHAINS AS DIGITAL SIGNAL SOURCES
    MULLIS, CT
    STEIGLITZ, K
    [J]. IEEE TRANSACTIONS ON AUDIO AND ELECTROACOUSTICS, 1972, AU20 (04): : 246 - +
  • [44] Unsupervised segmentation of hidden semi-Markov non stationary chains
    Lapuyade-Lahorgue, Jerome
    Pieczynski, Wojciech
    [J]. BAYESIAN INFERENCE AND MAXIMUM ENTROPY METHODS IN SCIENCE AND ENGINEERING, 2006, 872 : 347 - +
  • [45] Estimation of generalized multisensor hidden Markov chains and unsupervised image segmentation
    Giordana, N
    Pieczynski, W
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1997, 19 (05) : 465 - 475
  • [46] TUNING OF MARKOV CHAIN MONTE CARLO ALGORITHMS USING COPULAS
    Craiu, Radu V.
    [J]. UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 2011, 73 (01): : 5 - 12
  • [47] Multimodal Change Detection in Remote Sensing Images Using an Unsupervised Pixel Pairwise-Based Markov Random Field Model
    Touati, Redha
    Mignotte, Max
    Dahmane, Mohamed
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2020, 29 : 757 - 767
  • [48] Color Images Segmentation using Pairwise Markov Chain
    Ameur, Meryem
    Idrissi, Najlae
    Daoui, Cherki
    [J]. PROCEEDINGS OF 2018 6TH INTERNATIONAL CONFERENCE ON MULTIMEDIA COMPUTING AND SYSTEMS (ICMCS), 2018, : 29 - 34
  • [49] Pairwise clustering using a Monte Carlo Markov Chain
    Stosic, Borko D.
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2009, 388 (12) : 2373 - 2382
  • [50] Unsupervised image restoration and edge location using compound Gauss-Markov random fields and the MDL principle
    Figueiredo, MAT
    Leitao, JMN
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 1997, 6 (08) : 1089 - 1102