AUTOMATIC KNEE CARTILAGE SEGMENTATION USING FULLY VOLUMETRIC CONVOLUTIONAL NEURAL NETWORKS FOR EVALUATION OF OSTEOARTHRITIS

被引:0
|
作者
Raj, Archit [1 ]
Vishwanathan, Srikrishnan [1 ]
Ajani, Bhavya [1 ]
Krishnan, Karthik [1 ]
Agarwal, Harsh [1 ]
机构
[1] Samsung R&D Inst India Bangalore Pvt Ltd, Bangalore, Karnataka, India
关键词
Knee; MRI; Osteoarthritis; Deep Learning; Segmentation; Cartilage;
D O I
暂无
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Automated Cartilage segmentation is essential for improving the performance of advanced Knee Ostcoarthritis (OA) assessment due to its convoluted 3D structure. In this paper, we have developed a knee cartilage segmentation algorithm from a high resolution MR volume using a novel 3D- fully Convolutional Neural Network (CNN), called 'mu-Net' coupled with a multi-class loss function. This is, to our knowledge, the first automatic cartilage segmentation method using 3D CNNs. The proposed algorithm performed better than the state-of-the-art algorithm in the MICCAI SKI10 public challenge. We have further applied our proposed algorithm on another similar MR contrast (DESS) provided by Osteoarthritis Initiative (OAI) for OA assessment and have presented improved segmentation accuracies. Initial qualitative assessment of segmentation results visually depicts cartilage loss in longitudinal knee MR data.
引用
收藏
页码:851 / 854
页数:4
相关论文
共 50 条
  • [31] Automatic Grading of Individual Knee Osteoarthritis Features in Plain Radiographs Using Deep Convolutional Neural Networks
    Tiulpin, Aleksei
    Saarakkala, Simo
    [J]. DIAGNOSTICS, 2020, 10 (11)
  • [32] Fully automatic knee osteoarthritis severity grading using deep neural networks with a novel ordinal loss
    Chen, Pingjun
    Gao, Linlin
    Shi, Xiaoshuang
    Allen, Kyle
    Yang, Lin
    [J]. COMPUTERIZED MEDICAL IMAGING AND GRAPHICS, 2019, 75 : 84 - 92
  • [33] Automated segmentation of knee bone and cartilage combining statistical shape knowledge and convolutional neural networks: Data from the Osteoarthritis Initiative
    Ambellan, Felix
    Tack, Alexander
    Ehlke, Moritz
    Zachow, Stefan
    [J]. MEDICAL IMAGE ANALYSIS, 2019, 52 : 109 - 118
  • [34] Cartilage morphometry and magnetic susceptibility measurement for knee osteoarthritis with automatic cartilage segmentation
    Zhang, Qi
    Geng, Jiaolun
    Zhang, Ming
    Kan, Tianyou
    Wang, Liao
    Ai, Songtao
    Wei, Hongjiang
    Zhang, Lichi
    Liu, Chenglei
    [J]. QUANTITATIVE IMAGING IN MEDICINE AND SURGERY, 2023, 13 (06) : 3508 - +
  • [35] Fully Convolutional Networks for Automatic Pavement Crack Segmentation
    Escalona, Uriel
    Arce, Fernando
    Zamora, Erik
    Sossa, Humberto
    [J]. COMPUTACION Y SISTEMAS, 2019, 23 (02): : 451 - 460
  • [36] Brain Tumor Segmentation Using Deep Fully Convolutional Neural Networks
    Kim, Geena
    [J]. BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES, BRAINLES 2017, 2018, 10670 : 344 - 357
  • [37] Exudate Segmentation using Fully Convolutional Neural Networks and Inception Modules
    Chudzik, Piotr
    Majumdar, Somshubra
    Caliva, Francesco
    Al-Diri, Bashir
    Hunter, Andrew
    [J]. MEDICAL IMAGING 2018: IMAGE PROCESSING, 2018, 10574
  • [38] Fully automatic segmentation of sinonasal cavity and pharyngeal airway based on convolutional neural networks
    Leonardi, Rosalia
    Lo Giudice, Antonino
    Farronato, Marco
    Ronsivalle, Vincenzo
    Allegrini, Silvia
    Musumeci, Giuseppe
    Spampinato, Concetto
    [J]. AMERICAN JOURNAL OF ORTHODONTICS AND DENTOFACIAL ORTHOPEDICS, 2021, 159 (06) : 824 - +
  • [39] Automatic Airway Segmentation in Chest CT Using Convolutional Neural Networks
    Juarez, A. Garcia-Uceda
    Tiddens, H. A. W. M.
    de Bruijne, M.
    [J]. IMAGE ANALYSIS FOR MOVING ORGAN, BREAST, AND THORACIC IMAGES, 2018, 11040 : 238 - 250
  • [40] Fully Convolutional Neural Networks for Polyp Segmentation in Colonoscopy
    Brandao, Patrick
    Mazomenos, Evangelos
    Ciuti, Gastone
    Calio, Renato
    Bianchi, Federico
    Menciassi, Arianna
    Dario, Paolo
    Koulaouzidis, Anastasios
    Arezzo, Alberto
    Stoyanov, Danail
    [J]. MEDICAL IMAGING 2017: COMPUTER-AIDED DIAGNOSIS, 2017, 10134