Bayesian identification of multivariate autoregressive processes

被引:6
|
作者
Shaarawy, Samir M. [1 ]
Ali, Sherif S. [1 ]
机构
[1] Cairo Univ, Dept Stat, Fac Econ & Polit Sci, Cairo, Egypt
关键词
conditional likelihood function; identification; matrix normal-Wishart distribution; multivariate autoregressive processes; probability mass function;
D O I
10.1080/03610920701504370
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Identification is one of the most important stages of a time series analysis. This paper develops a direct Bayesian technique to identify the order of multivariate autoregressive processes. By employing the conditional likelihood function and a matrix normal-Wishart prior density, or Jeffrey' vague prior, the proposed identification technique is based on deriving the exact posterior probability mass function of the model order in a convenient form. Then one may easily evaluate the posterior probabilities of the model order and choose the order that maximizes the posterior mass function to be the suitable order of the time series data being analyzed. Assuming the bivariate autoregressive processes, a numerical study, with different prior mass functions, is carried out to assess the efficiency of the proposed technique. The analysis of the numerical results supports the adequacy of the proposed technique in identifying the orders of multivariate autoregressive processes.
引用
收藏
页码:791 / 802
页数:12
相关论文
共 50 条
  • [41] Estimation of temporal covariances in pathogen dynamics using Bayesian multivariate autoregressive models
    Mair, Colette
    Nickbakhsh, Sema
    Reeve, Richard
    McMenamin, Jim
    Reynolds, Arlene
    Gunson, Rory N.
    Murcia, Pablo R.
    Matthews, Louise
    PLOS COMPUTATIONAL BIOLOGY, 2019, 15 (12)
  • [42] Bayesian identification of double seasonal autoregressive time series models
    Amin, Ayman A.
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2019, 48 (08) : 2501 - 2511
  • [43] Multivariate threshold integer-valued autoregressive processes with explanatory variables
    Yang, Kai
    Xu, Nuo
    Li, Han
    Zhao, Yiwei
    Dong, Xiaogang
    APPLIED MATHEMATICAL MODELLING, 2023, 124 : 142 - 166
  • [45] An innovative Bayesian system identification method using autoregressive model
    Yang, Jia-Hua
    Lam, Heung-Fai
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2019, 133
  • [46] Identification of nonstationary multivariate autoregressive processes - Comparison of competitive and collaborative strategies for joint selection of estimation bandwidth and model order
    Niedzwiecki, Maciej
    Ciolek, Marcin
    DIGITAL SIGNAL PROCESSING, 2018, 78 : 72 - 81
  • [47] Bayesian Estimation of Multivariate Pure Moving Average Processes
    Albassam, Mohammed
    Soliman, Emad E. A.
    Ali, Sherif S.
    IEEE ACCESS, 2022, 10 : 14225 - 14235
  • [48] Bayesian Sequential Control Charts for Monitoring Multivariate Processes
    Zhu, H. M.
    Wang, Y. H.
    Hao, L. Y.
    Zeng, Z. F.
    Liu, Z. H.
    2009 IEEE 16TH INTERNATIONAL CONFERENCE ON INDUSTRIAL ENGINEERING AND ENGINEERING MANAGEMENT, VOLS 1 AND 2, PROCEEDINGS, 2009, : 1093 - +
  • [49] IDENTIFICATION OF TRUNCATED NARROW-BAND AUTOREGRESSIVE PROCESSES
    BURRASCANO, P
    MARTINELLI, G
    ORLANDI, G
    PROCEEDINGS OF THE IEEE, 1986, 74 (08) : 1164 - 1165
  • [50] Large deviations for Bayesian estimators in first-order autoregressive processes
    Macci, Claudio
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2010, 140 (09) : 2790 - 2797