Detection and removal of harmonic components in operational modal analysis

被引:4
|
作者
Xia, Zunping [1 ]
Wang, Tong [2 ]
Zhang, Lingmi [2 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, State Key Lab Mech & Control Mech Struct, Vibrat Testing & Anal, Nanjing, Jiangsu, Peoples R China
[2] Nanjing Univ Aeronaut & Astronaut, State Key Lab Mech & Control Mech Struct, Nanjing, Jiangsu, Peoples R China
关键词
operational modal analysis; enhanced spectral kurtosis; harmonic detection; harmonic removal; SPECTRAL KURTOSIS; RANDOM DECREMENT;
D O I
10.21595/jve.2017.17725
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Operational modal analysis (OMA) has been utilized to extract structural dynamic characteristics by only using the output responses. In many cases of OMA, the problem of harmonic components, which is caused by periodic excitation components to the structure, may occur, and may lead to erroneous modal identification. In this paper, an optimized harmonic indicator function named the enhanced spectral kurtosis (ESK) is proposed to improve the effectiveness of the harmonic components detection. Moreover, a new algorithm based on virtual excitation assumption is presented to remove the harmonic components in modal parameters estimation. Finally, the quality of the proposed method is compared with that of the conventional method using a numerical simulation and a practical experiment.
引用
下载
收藏
页码:5278 / 5289
页数:12
相关论文
共 50 条
  • [11] Harmonic mode identification in the operational modal analysis and its application
    Zhang, Yimin
    Zhang, Shouyuan
    Li, He
    Wen, Bangchun
    Zhendong Ceshi Yu Zhenduan/Journal of Vibration, Measurement and Diagnosis, 2008, 28 (03): : 197 - 200
  • [12] Identifying mode shapes and modal frequencies by operational modal analysis in the presence of harmonic excitation
    P. Mohanty
    D. J. Rixen
    Experimental Mechanics, 2005, 45 (3) : 213 - 220
  • [13] Identifying mode shapes and modal frequencies by operational modal analysis in the presence of harmonic excitation
    Mohanty, P
    Rixen, DJ
    EXPERIMENTAL MECHANICS, 2005, 45 (03) : 213 - 220
  • [14] Operational modal analysis in the presence of harmonic excitations by the use of transmissibility measurements
    Devriendt, Christof
    De Sitter, Gert
    Vanlanduit, Steve
    Guillaume, Patrick
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2009, 23 (03) : 621 - 635
  • [15] Repressing the effects of variable speed harmonic orders in operational modal analysis
    Randall, R. B.
    Coats, M. D.
    Smith, W. A.
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2016, 79 : 3 - 15
  • [16] Modified ERA method for operational modal analysis in the presence of harmonic excitations
    Mohanty, P
    Rixen, DJ
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2006, 20 (01) : 114 - 130
  • [17] Operational modal analysis of a nonlinear oscillation system under a harmonic excitation
    Jiang, Xuchu
    Jiang, Feng
    Zhang, Biao
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART C-JOURNAL OF MECHANICAL ENGINEERING SCIENCE, 2021, 235 (20) : 4926 - 4939
  • [18] A HARMONIC PEAK REDUCTION TECHNIQUE FOR OPERATIONAL MODAL ANALYSIS OF ROTATING MACHINERY
    Bienert, J.
    Andersen, P.
    Aguirre, R. C.
    6TH IOMAC: INTERNATIONAL OPERATIONAL MODAL ANALYSIS CONFERENCE PROCEEDINGS, 2015, : 619 - 625
  • [19] Continuous-Time Operational Modal Analysis in the Presence of Harmonic Disturbances
    Pintelon, R.
    Peeters, B.
    Guillaume, P.
    2008 IEEE INSTRUMENTATION AND MEASUREMENT TECHNOLOGY CONFERENCE, VOLS 1-5, 2008, : 326 - +
  • [20] Continuous-time operational modal analysis in the presence of harmonic disturbances
    Pintelon, R.
    Peeters, B.
    Guillaume, P.
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2008, 22 (05) : 1017 - 1035