Measurement of thermal conductivity and viscosity of ZnO-SiO2 hybrid nanofluids

被引:14
|
作者
Yalcin, Gokberk [1 ]
Oztuna, Semiha [1 ]
Dalkilic, Ahmet Selim [2 ]
Wongwises, Somchai [3 ,4 ]
机构
[1] Trakya Univ, Fac Engn, Dept Mech Engn, Energy Div, Edirne, Turkey
[2] Yildiz Tech Univ, Fac Mech Engn, Dept Mech Engn, Heat & Thermodynam Div, TR-34349 Istanbul, Turkey
[3] King Mongkuts Univ Technol Thonburi KMUTT, Fac Engn, Dept Mech Engn, Fluid Mech Thermal Engn & Multiphase Flow Res Lab, Bangkok 10140, Thailand
[4] Natl Sci & Technol Dev Agcy NSTDA, Pathum Thani 12120, Thailand
关键词
Hybrid nanofluids; ZnO; SiO2; Viscosity; Thermal conductivity; Stability; HEAT-TRANSFER APPLICATIONS; DYNAMIC VISCOSITY; ETHYLENE-GLYCOL; RHEOLOGICAL BEHAVIOR; TRANSFER ENHANCEMENT; AQUEOUS NANOFLUIDS; OXIDE NANOFLUIDS; SIO2; AL2O3; STABILITY;
D O I
10.1007/s10973-021-11076-8
中图分类号
O414.1 [热力学];
学科分类号
摘要
Preparing and defining of thermal properties of new type hybrid nanofluids are essential to understand the fluidity mechanism of hybrid nanofluids and select suitable nanofluids in terms of application. This research aims to provide an alternative fluid for different applications and complete the new type of nanofluid necessity in the literature that has been reported by different research groups. In this current investigation, water-based ZnO-SiO2 hybrid nanofluid is prepared by using the two-step method, and thermal conductivity and dynamic viscosity values are experimentally specified. ZnO-SiO2 hybrid nanofluid has 0.5%, 0.75%, and 1% with 50% ZnO-50% SiO2; 33.3% ZnO-66.6% SiO2, and 66.6% ZnO-33.3% SiO2 nanoparticle mixtures. Thermal conductivity and dynamic viscosity are experimentally measured from 20 to 60 degrees C. Maximum thermal conductivity rising is 2.26%, and it is obtained for 1% ZnO0.66-SiO2(0.33) at 50 degrees C. Maximum dynamic viscosity increment is measured as 1.36 times of base fluid for 1% ZnO0.33-SiO2(0.66) at 50 degrees C. Changes in thermal properties are reasonable to use ZnO-SiO2 hybrid nanofluid in different thermal applications to increase system heat transfer rate and efficiency and reduce pressure drop and power consumption. Finally, two different regression equations are developed to predict the thermal conductivity and dynamic viscosity, respectively.
引用
收藏
页码:8243 / 8259
页数:17
相关论文
共 50 条
  • [31] CATALYTIC ACTIVITY OF ZNO-SIO2 FOR ISOMERIZATION OF BUTENES
    TANABE, K
    SUMIYOSH.T
    HATTORI, H
    CHEMISTRY LETTERS, 1972, (08) : 723 - +
  • [32] An experimental study on the thermal conductivity and dynamic viscosity of TiO2-SiO2 nanofluids in water: Ethylene glycol mixture
    Nabil, M. F.
    Azmi, W. H.
    Hamid, K. Abdul
    Mamat, Rizalman
    Hagos, Ftwi Y.
    INTERNATIONAL COMMUNICATIONS IN HEAT AND MASS TRANSFER, 2017, 86 : 181 - 189
  • [33] High thermal annealing effect on structural and optical properties of ZnO-SiO2 nanocomposite
    Babu, K. Sowri
    Reddy, A. Ramachandra
    Reddy, K. Venugopal
    Mallika, A. N.
    MATERIALS SCIENCE IN SEMICONDUCTOR PROCESSING, 2014, 27 : 643 - 648
  • [34] Experimental investigation and development of new correlation for thermal conductivity and viscosity of BioGlycol/water based SiO2 nanofluids
    Abdolbaqi, M. Kh.
    Sidik, Nor Azwadi Che
    Rahim, Mohd Fadzil Abdul
    Mamat, Rizalman
    Azmi, W. H.
    Yazid, Mohammad Noor Afiq Witri Muhammad
    Najafi, G.
    INTERNATIONAL COMMUNICATIONS IN HEAT AND MASS TRANSFER, 2016, 77 : 54 - 63
  • [35] Preparation, characterization, viscosity and thermal conductivity of CaCOaqueous nanofluids
    ZHU HaiTao LI ChangJiang WU DaXiong ZHANG CanYing YIN YanSheng College of Materials Science and Engineering Qingdao University of Science and Technology Qingdao China Department of Materials Ocean University of China Qingdao China
    Science China(Technological Sciences), 2010, (02) : 360 - 368
  • [36] AN INVESTIGATION ON THERMAL CONDUCTIVITY AND VISCOSITY OF WATER BASED NANOFLUIDS
    Tavman, I.
    Turgut, A.
    MICROFLUIDICS BASED MICROSYSTEMS: FUNDAMENTALS AND APPLICATIONS, 2010, : 139 - 162
  • [37] Relationship between the thermal conductivity and shear viscosity of nanofluids
    Ding, Yulong
    Chen, Haisheng
    Musina, Zenfira
    Jin, Yi
    Zhang, Tianfu
    Witharana, Sanjeeva
    Yang, Wei
    PHYSICA SCRIPTA, 2010, T139
  • [38] Correlations for thermal conductivity and viscosity of water based nanofluids
    Azmi, W. H.
    Sharma, K. V.
    Mamat, Rizalman
    Alias, A. B. S.
    Misnon, Izan Izwan
    1ST INTERNATIONAL CONFERENCE ON MECHANICAL ENGINEERING RESEARCH 2011 (ICMER2011), 2012, 36
  • [39] Thermal conductivity and viscosity models of metallic oxides nanofluids
    Alawi, Omer A.
    Sidik, Nor Azwadi Che
    Xian, Hong Wei
    Kean, Tung Hao
    Kazi, S. N.
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2018, 116 : 1314 - 1325
  • [40] Predicting the thermal conductivity of nanofluids based on suspension viscosity
    Chen, Haisheng
    Witharana, Sanjeeva
    Jin, Yi
    Ding, Yulong
    Kim, Chongyoup
    2008 4TH INTERNATIONAL CONFERENCE ON INFORMATION AND AUTOMATION FOR SUSTAINABILITY (ICIAFS), 2008, : 30 - +