Li-Yau Harnack Estimates for a Heat-Type Equation Under the Geometric Flow

被引:5
|
作者
Li, Yi [1 ]
Zhu, Xiaorui [2 ]
机构
[1] Univ Luxembourg, FSTC, Math Res Unit, Campus Belval,Maison Nombre,6,Ave Fonte, L-4364 Esch Sur Alzette, Luxembourg
[2] China Maritime Police Acad, Ningbo 315801, Peoples R China
关键词
Nonlinear parabolic equation; Harnack estimate; Geometric flow; NONLINEAR PARABOLIC EQUATION;
D O I
10.1007/s11118-018-9739-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we consider the gradient estimates for a postive solution of the nonlinear parabolic equation partial differential (t)u = Delta(t)u + hu(p) on a Riemannian manifold whose metrics evolve under the geometric flow partial differential (t)g(t) = - 2S(g(t)). To obtain these estimate, we introduce a quantity (S) under bar along the flow which measures whether the tensor S-ij satisfies the second contracted Bianchi identity. Under conditions on Ric(g(t)),S-g(t), and (S) under bar, we obtain the gradient estimates.
引用
收藏
页码:469 / 496
页数:28
相关论文
共 50 条