Low-velocity impact response of multilayer foam core sandwich panels with composite face sheets

被引:51
|
作者
Zhu, Yefei [1 ]
Sun, Yuguo [1 ,2 ]
机构
[1] Harbin Inst Technol, Ctr Composite Mat, Harbin 150001, Peoples R China
[2] Harbin Inst Technol, Natl Key Lab Sci & Technol Adv Composites Special, Harbin 150001, Peoples R China
基金
中国国家自然科学基金;
关键词
Multilayer sandwich panel; Analytical model; Low-velocity impact response; Impact resistance; ALUMINUM FOAM; DAMAGE PREDICTION; DYNAMIC-RESPONSE; OPTIMIZATION; PLATES; BEAMS;
D O I
10.1016/j.ijmecsci.2021.106704
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
This paper focuses on the analytical and experimental investigations on the low-velocity impact response of multilayer foam core sandwich panels with composite face sheets. Taking into account the reinforcement of face sheets by foam cores, an energy-based analytical model for multilayer sandwich panels was developed to predict contact force, impactor displacement and energy absorption. The predictions were validated by experimental results. The impact resistance of the multilayer sandwich panel is superior to that of monolayer one with the same mass under the low-velocity impact. Adjusting the local stiffness close to the top face sheet can further improve the energy absorption of multilayer sandwich panels; however, the maximum contact force will be increased. This finding suggests that the design of multilayer foam core sandwich panels needs to carefully consider the requirements according to the cases in engineering applications.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Experimental evaluation of the response of sandwich panels in low-velocity impact
    Mocian, Oana Alexandra
    Constantinescu, Dan Mihai
    Sandu, Marin
    Sorohan, Stefan
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART L-JOURNAL OF MATERIALS-DESIGN AND APPLICATIONS, 2019, 233 (03) : 315 - 327
  • [32] Effects of aluminum foam filling on the low-velocity impact response of sandwich panels with corrugated cores
    Yan, L. L.
    Yu, B.
    Han, B.
    Zhang, Q. C.
    Lu, T. J.
    Lu, B. H.
    JOURNAL OF SANDWICH STRUCTURES & MATERIALS, 2020, 22 (04) : 929 - 947
  • [33] Influence of hydrothermal aging on the mechanical performance of foam core sandwich panels subjected to low-velocity impact
    Liu, Youping
    Wu, Ye
    SCIENCE AND ENGINEERING OF COMPOSITE MATERIALS, 2022, 29 (01) : 9 - 22
  • [34] The Low Velocity Impact Response of Foam Core Sandwich Panels with a Shape Memory Alloy Hybrid Face-Sheet
    Li, Hao
    Wang, Zhenqing
    Yu, Zhengwei
    Sun, Min
    Liu, Yanfei
    MATERIALS, 2018, 11 (11):
  • [35] Experiments and numerical simulations of low-velocity impact of sandwich composite panels
    Zhang, Taotao
    Yan, Ying
    Li, Jianfeng
    POLYMER COMPOSITES, 2017, 38 (04) : 646 - 656
  • [36] Effect of temperature on the low-velocity impact behavior of composite sandwich panels
    Erickson, MD
    Kallmeyer, AR
    Kellogg, KG
    JOURNAL OF SANDWICH STRUCTURES & MATERIALS, 2005, 7 (03) : 245 - 264
  • [37] Damage prediction in composite sandwich panels subjected to low-velocity impact
    Feng, D.
    Aymerich, F.
    COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING, 2013, 52 : 12 - 22
  • [38] Manufacturing and low-velocity impact characterization of foam filled 3-D integrated core sandwich composites with hybrid face sheets
    Hosur, MV
    Abdullah, M
    Jeelani, S
    COMPOSITE STRUCTURES, 2005, 69 (02) : 167 - 181
  • [39] Evaluation of corrugated core configuration effects on low-velocity impact response in metallic sandwich panels
    Zurnaci, Erman
    Gokkaya, Hasan
    MATERIALS TESTING, 2024, 66 (02) : 154 - 165
  • [40] Application of Auxetic Core to Improve Dynamic Response of Sandwich Panels Under Low-Velocity Impact
    Biglari, Hasan
    Teymouri, Hadi
    Foroutan, Mohammad
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2024, 49 (08) : 11683 - 11697