A novel Bayesian continuous piecewise linear log-hazard model, with estimation and inference via reversible jump Markov chain Monte Carlo

被引:3
|
作者
Chapple, Andrew G. [1 ]
Peak, Taylor [2 ]
Hemal, Ashok [2 ]
机构
[1] Louisiana State Univ, Hlth Sci Ctr, Biostat Program, Sch Publ Hlth, New Orleans, LA 70112 USA
[2] Wake Forest Baptist Med Ctr, Dept Urol, Winston Salem, NC USA
基金
美国国家科学基金会;
关键词
Bayesian methods; Cox models; hazard estimation; reversible jump Markov chain Monte Carlo; survival analysis; SURVIVAL-DATA; OUTCOMES;
D O I
10.1002/sim.8511
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
We present a reversible jump Bayesian piecewise log-linear hazard model that extends the Bayesian piecewise exponential hazard to a continuous function of piecewise linear log hazards. A simulation study encompassing several different hazard shapes, accrual rates, censoring proportion, and sample sizes showed that the Bayesian piecewise linear log-hazard model estimated the true mean survival time and survival distributions better than the piecewsie exponential hazard. Survival data from Wake Forest Baptist Medical Center is analyzed by both methods and the posterior results are compared.
引用
下载
收藏
页码:1766 / 1780
页数:15
相关论文
共 50 条
  • [21] Parameter Estimation in Sparse Linear-Gaussian State-Space Models via Reversible Jump Markov Chain Monte Carlo
    Cox, Benjamin
    Elvira, Victor
    2022 30TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO 2022), 2022, : 797 - 801
  • [22] Bayesian estimation of an autoregressive model using Markov chain Monte Carlo
    Barnett, G
    Kohn, R
    Sheather, S
    JOURNAL OF ECONOMETRICS, 1996, 74 (02) : 237 - 254
  • [23] Force field complexity assessed via Bayesian inference and reversible jump Monte Carlo sampling
    Madin, Owen
    Messerly, Richard
    Shirts, Michael
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 258
  • [24] Bayesian inference of channelized section spillover via Markov Chain Monte Carlo sampling
    Qi, Hongsheng
    Hu, Xianbiao
    TRANSPORTATION RESEARCH PART C-EMERGING TECHNOLOGIES, 2018, 97 : 478 - 498
  • [25] Use of the reversible jump Markov chain Monte Carlo algorithm to select multiplicative terms in the AMMI-Bayesian model
    da Silva, Carlos Pereira
    Mendes, Cristian Tiago Erazo
    da Silva, Alessandra Querino
    de Oliveira, Luciano Antonio
    Von Pinho, Renzo Garcia
    Balestre, Marcio
    PLOS ONE, 2023, 18 (01):
  • [26] Inference of demographic history from genealogical trees using reversible jump Markov chain Monte Carlo
    Opgen-Rhein, R
    Fahrmeir, L
    Strimmer, K
    BMC EVOLUTIONARY BIOLOGY, 2005, 5 (1)
  • [27] Bayesian inference of the sites of perturbations in metabolic pathways via Markov chain Monte Carlo
    Jayawardhana, Bayu
    Kell, Douglas B.
    Rattray, Magnus
    BIOINFORMATICS, 2008, 24 (09) : 1191 - 1197
  • [28] Inference of demographic history from genealogical trees using reversible jump Markov chain Monte Carlo
    Rainer Opgen-Rhein
    Ludwig Fahrmeir
    Korbinian Strimmer
    BMC Evolutionary Biology, 5
  • [29] Bayesian estimation of NIG models via Markov chain Monte Carlo methods
    Karlis, D
    Lillestöl, J
    APPLIED STOCHASTIC MODELS IN BUSINESS AND INDUSTRY, 2004, 20 (04) : 323 - 338
  • [30] Marginal reversible jump Markov chain Monte Carlo with application to motor unit number estimation
    Drovandi, Christopher C.
    Pettitt, Anthony N.
    Henderson, Robert D.
    McCombe, Pamela A.
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2014, 72 : 128 - 146