A novel Bayesian continuous piecewise linear log-hazard model, with estimation and inference via reversible jump Markov chain Monte Carlo

被引:3
|
作者
Chapple, Andrew G. [1 ]
Peak, Taylor [2 ]
Hemal, Ashok [2 ]
机构
[1] Louisiana State Univ, Hlth Sci Ctr, Biostat Program, Sch Publ Hlth, New Orleans, LA 70112 USA
[2] Wake Forest Baptist Med Ctr, Dept Urol, Winston Salem, NC USA
基金
美国国家科学基金会;
关键词
Bayesian methods; Cox models; hazard estimation; reversible jump Markov chain Monte Carlo; survival analysis; SURVIVAL-DATA; OUTCOMES;
D O I
10.1002/sim.8511
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
We present a reversible jump Bayesian piecewise log-linear hazard model that extends the Bayesian piecewise exponential hazard to a continuous function of piecewise linear log hazards. A simulation study encompassing several different hazard shapes, accrual rates, censoring proportion, and sample sizes showed that the Bayesian piecewise linear log-hazard model estimated the true mean survival time and survival distributions better than the piecewsie exponential hazard. Survival data from Wake Forest Baptist Medical Center is analyzed by both methods and the posterior results are compared.
引用
收藏
页码:1766 / 1780
页数:15
相关论文
共 50 条
  • [1] Reversible jump Markov chain Monte Carlo computation and Bayesian model determination
    Green, PJ
    [J]. BIOMETRIKA, 1995, 82 (04) : 711 - 732
  • [2] Bayesian inference in hidden Markov models through the reversible jump Markov chain Monte Carlo method
    Robert, CP
    Rydén, T
    Titterington, DM
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2000, 62 : 57 - 75
  • [3] Bayesian inference on principal component analysis using reversible jump Markov chain Monte Carlo
    Zhang, ZH
    Chan, KL
    Kwok, JT
    Yeung, DY
    [J]. PROCEEDING OF THE NINETEENTH NATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND THE SIXTEENTH CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2004, : 372 - 377
  • [4] Markov chain Monte Carlo inference for Markov jump processes via the linear noise approximation
    Stathopoulos, Vassilios
    Girolami, Mark A.
    [J]. PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2013, 371 (1984):
  • [6] Bayesian phylogenetic model selection using reversible jump Markov chain Monte Carlo
    Huelsenbeck, JP
    Larget, B
    Alfaro, ME
    [J]. MOLECULAR BIOLOGY AND EVOLUTION, 2004, 21 (06) : 1123 - 1133
  • [7] Reversible jump Markov chain Monte Carlo strategies for Bayesian model selection in autoregressive processes
    Vermaak, J
    Andrieu, C
    Doucet, A
    Godsill, SJ
    [J]. JOURNAL OF TIME SERIES ANALYSIS, 2004, 25 (06) : 785 - 809
  • [8] Reversible Jump Markov Chain Monte Carlo for Bayesian deconvolution of point sources
    Stawinski, G
    Doucet, A
    Duvaut, P
    [J]. BAYESIAN INFERENCE FOR INVERSE PROBLEMS, 1998, 3459 : 179 - 190
  • [9] Bayesian parameter estimation and model selection of a nonlinear dynamical system using reversible jump Markov chain Monte Carlo
    Tiboaca, D.
    Green, P. L.
    Barthorpe, J.
    Worden, K.
    [J]. PROCEEDINGS OF INTERNATIONAL CONFERENCE ON NOISE AND VIBRATION ENGINEERING (ISMA2014) AND INTERNATIONAL CONFERENCE ON UNCERTAINTY IN STRUCTURAL DYNAMICS (USD2014), 2014, : 1253 - 1266
  • [10] Model choice using reversible jump Markov chain Monte Carlo
    Hastie, David I.
    Green, Peter J.
    [J]. STATISTICA NEERLANDICA, 2012, 66 (03) : 309 - 338